题目大意:给你一个序列,求出指定区间的(l<=i<=r) mod 1000777 的值

还复习了欧拉函数以及线性筛逆元

考虑欧拉函数的的性质,(l<=i<=r),等价于 (p[j]是区间内所有出现过的质数)

那么考虑找出区间内所有出现过的质数,这思路和HH的项链是不是很像??

由于此题强制在线,所以把树状数组替换成了主席树而已

原来我以前写的主席树一直都是错的......还好推出了我原来错误代码的反例

在继承上一个树的信息时,注意不要破坏现在的树

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define il inline
#define N 50010
#define maxn 1000000
#define mod 1000777
using namespace std; int n,q,ctp,tot;
int root[N];
int pr[maxn+],use[maxn+],lst[maxn+];
ll a[N],inv[mod+],nxt[maxn+];
struct Seg{ll sum;int ls,rs;}seg[N*]; //re
void prime_inv()
{
for(int i=;i<=maxn;i++)
{
if(!use[i])
pr[++ctp]=i,nxt[i]=i;
for(int j=;j<=ctp&&i*pr[j]<=maxn;j++){
use[i*pr[j]]=,nxt[i*pr[j]]=pr[j];
if(i%pr[j]==) break;
}
}
inv[]=inv[]=;
for(ll i=;i<mod;i++)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
}
ll gc()
{
ll ret=,fh=;char p=getchar();
while(p<''||p>'') {if(p=='-')fh=-;p=getchar();}
while(p>=''&&p<='') {ret=(ret<<)+(ret<<)+p-'';p=getchar();}
return ret*fh;
}
il void pushup(int rt){seg[rt].sum=(seg[seg[rt].ls].sum*seg[seg[rt].rs].sum)%mod;}
void build(int l,int r,int rt)
{
seg[rt].sum=;
if(l==r)return;
int mid=(l+r)>>;
seg[rt].ls=++tot,build(l,mid,tot);
seg[rt].rs=++tot,build(mid+,r,tot);
}
void update(int x,int l,int r,int rt1,int rt2,ll w)
{
if(l==r) {seg[rt2].sum=(seg[rt2].sum*w)%mod;return;}
int mid=(l+r)>>;
if(x<=mid)
{
if(!seg[rt2].ls||seg[rt1].ls==seg[rt2].ls){
seg[rt2].ls=++tot,seg[seg[rt2].ls].sum=seg[seg[rt1].ls].sum;
if(!seg[rt2].rs)
seg[rt2].rs=seg[rt1].rs;
}
update(x,l,mid,seg[rt1].ls,seg[rt2].ls,w);
}else{
if(!seg[rt2].rs||seg[rt1].rs==seg[rt2].rs){
seg[rt2].rs=++tot,seg[seg[rt2].rs].sum=seg[seg[rt1].rs].sum;
if(!seg[rt2].ls)
seg[rt2].ls=seg[rt1].ls;
}
update(x,mid+,r,seg[rt1].rs,seg[rt2].rs,w);
}
pushup(rt2);
}
ll query(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R) return seg[rt].sum;
int mid=(l+r)>>;ll ans=;
if(L<=mid) ans*=query(L,R,l,mid,seg[rt].ls),ans%=mod;
if(R>mid) ans*=query(L,R,mid+,r,seg[rt].rs),ans%=mod;
return ans;
} int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
scanf("%d%d",&n,&q);
for(int i=;i<=n;i++) a[i]=gc();
prime_inv();
root[]=++tot;
build(,n,);
ll x,p,w;
for(int i=;i<=n;i++)
{
x=a[i],w=a[i],root[i]=++tot;
while(x!=){
p=nxt[x];
if(lst[p])
update(lst[p],,n,root[i-],root[i],(inv[p-]*p)%mod);
lst[p]=i;
x/=p,w=((w*(p-(ll))%mod)*inv[p])%mod;
while(x%p==) x/=p;
}
update(i,,n,root[i-],root[i],w);
}
ll l,r,ans=;
for(int i=;i<=q;i++)
{
l=gc(),r=gc();
l^=ans,r^=ans;
ans=query(l,r,,n,root[r]);
printf("%lld\n",ans);
}
return ;
}

BZOJ 4026 dC Loves Number Theory (主席树+数论+欧拉函数)的更多相关文章

  1. bzoj 4026 dC Loves Number Theory 主席树+欧拉函数

    题目描述 dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代 ...

  2. bzoj 4026 dC Loves Number Theory

    把我写吐了 太弱了 首先按照欧拉函数性质 我只需要统计区间不同质数个数就好了 一眼主席树 其次我被卡了分解质因数这里 可以通过质数筛时就建边解决 不够灵性啊,不知道如何改 #include<bi ...

  3. BZOJ 4026: dC Loves Number Theory 可持久化线段树 + 欧拉函数 + 数学

    Code: #include <bits/stdc++.h> #define ll long long #define maxn 50207 #define setIO(s) freope ...

  4. [bzoj4026]dC Loves Number Theory_主席树_质因数分解_欧拉函数

    dC Loves Number Theory 题目大意:dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源. 给定一个长度为 n的正整数序列A,有q次询问 ...

  5. [BZOJ4026]dC Loves Number Theory(线段树)

    根据欧拉函数的定义式可知,可以先算出a[l]*a[l+1]*...*a[r]的值,然后枚举所有存在的质因子*(p-1)/p. 发现这里区间中一个质因子只要计算一次,所以指计算“上一个同色点在区间外”的 ...

  6. 【BZOJ4026】dC Loves Number Theory 分解质因数+主席树

    [BZOJ4026]dC Loves Number Theory Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.    给 ...

  7. 【bzoj4026】dC Loves Number Theory 可持久化线段树

    题目描述 dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.  给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n ...

  8. [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树

    链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...

  9. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

随机推荐

  1. JAVA中各个包的主要作用

    00:48:0800:48:1022013013-06-282013-06-2800:48:182013-06-2800:48:20  java.util是JAVA的utility工具包 java.l ...

  2. 训练1-U

    输入2个正整数A,B,求A与B的最小公倍数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最小公倍数. Sample Input ...

  3. nyoj314-斐波那契数列四吧

    斐波那契数列四吧 时间限制:3000 ms  |  内存限制:65535 KB 难度:2 描述 斐波那契数列为:0,1,1,2,3,5,8,13....,常规递推公式为f(n)=f(n-1)+f(n- ...

  4. [luogu1463 HAOI2007] 反素数 (约数)

    传送门 Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例 ...

  5. [HEOI2013]Eden 的新背包问题

    数据极水,不加优化的多重背包都能过...早知道考试的时候不加奇奇怪怪的卡常优化,卡了45分... 就是从前往后做一个多重背包,从后往前再做一个,问的时候就暴力求一下跳过这个的最佳方案... #incl ...

  6. OOA,OOD,OOP区别

    定义: OOA(Object-Oriented Analysis,面向对象分析方法) OOD(Object-Oriented Design,面向对象设计) OOP(Object Oriented Pr ...

  7. django-5-自定义模板过滤器及标签

    <<<代码布局(自定义的代码放哪里)>>> (1)某个app特有的  1.一般放app目录下 固定名为templatetags 的python文件夹里鸭,如果是别的 ...

  8. asp.net mvc--传值-后台->前台

    后台传值到前台的方式 Model Binding # 这是public ActionResult中的最后部分 return View(listmode); json方式01 public void G ...

  9. nodejs-mysql模块

    安装mysql模块 1 npm install -g mysql node中使用Mysql模块来执行mysql命令 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 var ht ...

  10. [HTML 5] Styling with ARIA

    See if you can do a better job styling this button using ARIA states. One huge benefit to styling wi ...