【bzoj2818】: Gcd

考虑素数p<=n

gcd(xp,yp)=p 当 gcd(x,y)=1 xp,yp<=n满足条件

p对答案的贡献:

预处理前缀和就好了

 /* http://www.cnblogs.com/karl07/ */
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define ll long long
const int N=1e7+;
ll phi[N],prime[N];
int cnt=,n;
ll ans; void PHI(int n){
phi[]=;
for (int i=;i<=n;i++){
if (!phi[i]){
prime[++cnt]=i;
for (int j=i;j<=n;j+=i){
if (phi[j]==) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
} int main(){
scanf("%d",&n);
PHI(n);
for (int i=;i<=n;i++) phi[i]+=phi[i-];
for (int i=;i<=cnt;i++){
ans+=phi[n/prime[i]]*-;
}
printf("%lld\n",ans);
return ;
}

【bzoj2818】: Gcd 数论-欧拉函数的更多相关文章

  1. bzoj2818 Gcd(欧拉函数)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  2. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  3. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  4. 数论-欧拉函数-LightOJ - 1370

    我是知道φ(n)=n-1,n为质数  的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...

  5. 【BZOJ2818】Gcd (欧拉函数)

    网址:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 一道数论裸题,欧拉函数前缀和搞一下就行了. 小于n的gcd为p的无序数对,就是phi(1 ...

  6. uva11426 gcd、欧拉函数

    题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...

  7. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  8. Codeforces_776E: The Holmes Children (数论 欧拉函数)

    题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...

  9. Codeforces 776E: The Holmes Children (数论 欧拉函数)

    题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...

随机推荐

  1. Contiki学习笔记

    http://blog.chinaunix.net/uid-9112803-id-2975824.html

  2. ucos ii 百度官方介绍

          μC/OS II(Micro-Controller Operating System Two)是一个可以基于ROM运行的.可裁剪的.抢占式.实时多任务内核,具有高度可移植性,特别适合于微处 ...

  3. kafka集群安装和kafka-manager

    1.软件环境 (3台服务器-测试)10.11.12.31 mykafka110.11.12.32 mykafka210.11.12.33 mykafka3 [root@localhost ~]# ca ...

  4. springmvc----demo---login---bai

    web.xml配置: <?xml version="1.0" encoding="UTF-8"?> <web-app version=&quo ...

  5. Git学习笔记(四)标签和搭建Git服务

    一.标签是什么 发布一个版本时,我们通常先在版本库中打一个标签,这样,就唯一确定了打标签时刻的版本.将来无论什么时候,取某个标签的版本,就是把那个打标签的时刻的历史版本取出来.所以,标签也是版本库的一 ...

  6. Beautiful Soup 4.2.0

    Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式 快速开始 pip install beaut ...

  7. 1107SQLserver基础--语句、存储过程

    [随堂练习]--查询‘李数’老师教的数学成绩大于80分的学生的信息, 并且人数大于3的话,输出达标:否则输出不达标. 存储过程 --带参数的程序代码块---代表执行命令存储在数据库中,存储代码,没有调 ...

  8. Shell编程进阶 1.3data命令

    date命令是显示日期时间的命令 date 2016年 01月 01日 星期五 15:05:01 CST 修改时间的选项是 -s date -s "2016-01-01 12:56:10&q ...

  9. App.CSharp.Grid的ICells接口

    using System;using System.Collections.Generic;using System.Text;using System.Drawing;using System.Wi ...

  10. 基于ActiveMQ的Topic的数据同步——消费者持久化

    前面一章中介绍了activemq的初步实现:基于ActiveMQ的Topic的数据同步——初步实现 下面来解决持久化订阅的问题: (1)使用queue,即队列时,每个消息只有一个消费者,所以,持久化很 ...