【bzoj2818】: Gcd 数论-欧拉函数
考虑素数p<=n
gcd(xp,yp)=p 当 gcd(x,y)=1 xp,yp<=n满足条件
p对答案的贡献:
预处理前缀和就好了
/* http://www.cnblogs.com/karl07/ */
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define ll long long
const int N=1e7+;
ll phi[N],prime[N];
int cnt=,n;
ll ans; void PHI(int n){
phi[]=;
for (int i=;i<=n;i++){
if (!phi[i]){
prime[++cnt]=i;
for (int j=i;j<=n;j+=i){
if (phi[j]==) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
} int main(){
scanf("%d",&n);
PHI(n);
for (int i=;i<=n;i++) phi[i]+=phi[i-];
for (int i=;i<=cnt;i++){
ans+=phi[n/prime[i]]*-;
}
printf("%lld\n",ans);
return ;
}
【bzoj2818】: Gcd 数论-欧拉函数的更多相关文章
- bzoj2818 Gcd(欧拉函数)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- bzoj 2818 GCD 数论 欧拉函数
bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...
- 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...
- 数论-欧拉函数-LightOJ - 1370
我是知道φ(n)=n-1,n为质数 的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...
- 【BZOJ2818】Gcd (欧拉函数)
网址:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 一道数论裸题,欧拉函数前缀和搞一下就行了. 小于n的gcd为p的无序数对,就是phi(1 ...
- uva11426 gcd、欧拉函数
题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...
- BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...
- Codeforces_776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
- Codeforces 776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
随机推荐
- HTTP-Runoob:HTTP状态码
ylbtech-HTTP-Runoob:HTTP状态码 1.返回顶部 1. HTTP状态码 当浏览者访问一个网页时,浏览者的浏览器会向网页所在服务器发出请求.当浏览器接收并显示网页前,此网页所在的服务 ...
- socket模型
Socket: "主机" + "端口" = 套接字/插座; 仅仅是一个通信模型,不属于七层协议(网络协议). 一台电脑(IP)的一个应用程序(端口) 和 另一台 ...
- UML 学习[一]
上了好久软件工程,才开始这门课程中重要部分的学习----uml图. 统一建模语言(UML,英语:Unified Modeling Language)是非专利的第三代建模和规约语言.UML是一种开放的方 ...
- Solaris10技巧
如何查看UFS文件系统创建命令 root@ofs0accmcc01 # mkfs -m /dev/md/rdsk/d100 mkfs -F ufs -o nsect=128,ntrack=48,bsi ...
- leetcode637
层次遍历,计算每一层的节点值,然后求平均值. class Solution { public: vector<double> averageOfLevels(TreeNode* root) ...
- onclick事件没有反应的五种可能情况
转自:https://blog.csdn.net/qujing_1120/article/details/76853039 onclick=”alert()” 事件没有反应的几种情况.第一:<i ...
- Solr5.5.3的研究之路 ---1、从Mysql导入数据并创建索引
公司需要用到全文检索,故使用Solr,也是新人一枚,本人查看的前提是Solr已经安装部署成功,我用的服务器是自带的Jetty 1.创建Collection [root@whoami bin]# ./s ...
- Web访问中的角色与协议
- loader的意义和内部机制浅析
意义: loader可以异步的加载数据到我们的activity或者fragment上面,让加载数据的时候ui线程不阻塞. 而且当数据发生变化的时候,还可以及时更新 具体用法参考 http://deve ...
- day17 14.dao模式介绍
Web的三层架构,不是MVC,Web层,Service层,DAO层. 之前玩的JSP Servlet JavaBean那是MVC模式,那玩意只是表现层的东西. 转账汇款的例子. 说了这么多有啥用啊,一 ...