「BZOJ1010」[HNOI2008] 玩具装箱toy(斜率优化)
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为 1⋯N1\cdots N1⋯N 的 NNN 件玩具,第 iii 件玩具经过压缩后变成一维长度为 CiC_iCi .为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第 iii 件玩具到第 jjj 个玩具放到一个容器中,那么容器的长度将为 x=j−i+∑k=ijCkx=j-i+\sum\limits_{k=i}^{j}C_kx=j−i+k=i∑jCk 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为 xxx ,其制作费用为 (X−L)2(X-L)^2(X−L)2 .其中 LLL 是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过 LLL 。但他希望费用最小.
输入输出格式
输入格式:
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
输出格式:
输出最小费用
输入输出样例
5 4
3
4
2
1
4
输出样例#1: 复制
1
题解
这里
// luogu-judger-enable-o2
//minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#define db double
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
int n,L;
db sum[N],dp[N];int h,t,q[N];
inline db a(int i){return sum[i]+i;}
inline db b(int i){return sum[i]+i+L+;}
inline db X(int i){return b(i);}
inline db Y(int i){return dp[i]+b(i)*b(i);}
inline db slope(int i,int j){return (Y(i)-Y(j))/(X(i)-X(j));}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),L=read();
for(int i=;i<=n;++i) sum[i]=read()+sum[i-];
h=t=;
for(int i=;i<=n;++i){
while(h<t&&slope(q[h],q[h+])<*a(i)) ++h;
double p=a(i)-b(q[h]);
dp[i]=dp[q[h]]+p*p;
while(h<t&&slope(q[t-],q[t])>slope(q[t-],i)) --t;
q[++t]=i;
}
printf("%lld\n",(ll)dp[n]);
return ;
}
「BZOJ1010」[HNOI2008] 玩具装箱toy(斜率优化)的更多相关文章
- 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
- bzoj1010: [HNOI2008]玩具装箱toy——斜率优化
方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...
- [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...
随机推荐
- 网页效果分析 VCD分解
VCD分解分为三部分: 1. view 视觉 HTML + CSS 基本界面模板 2. controller 控制 javascript 内 ...
- redux使用教程详细介绍
本文介绍redux的使用 安装 cnpm install redux --save cnpm install react-redux --save cnpm install redux-devtool ...
- paramiko连接方式
链接方法: 方式一: ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh. ...
- javascript——屏蔽右键快捷菜单
JS: function menufalse(){ return false; } document.oncontextmenu = menufalse; //禁用快捷菜单 Jquery: $(&qu ...
- 11-10SQLserver基础--数据库之视图
视图 视图实际就是对表的连接展现出来的结果建成的虚拟表.简单来说,视图实际上就是一个虚拟的表,通过表与表之间的关系连接起来,方便查询时使用. 首先,将需要连接的语句存储到数据库中,定义新的视图名代替连 ...
- xcode编写c/c++静态库使用系统头文件问题
c/c++编写的静态库中有引用ios系统头文件比如: #include <EGL/egl.h> 在xcode编译的时候需要设置静态库程序: Build Settings-Header Se ...
- css的relative与absolute(一)
relative与absolute是position的两个值,本文对这两个值得关系进行了一个小实验 实验一: 首先定义了两个div元素,代码如下所示: <!doctype html> &l ...
- Python之POST登录测试
不解释,直接上代码: #!/usr/bin/env python # -*- encoding: utf-8 -*- """ @version: v1.0 @author ...
- Ros学习——导航
1.导航框架 在总体框架图中可以看到,move_base提供了ROS导航的配置.运行.交互接口,它主要包括两个部分: (1) 全局路径规划(global planner):根据给定的目标位置 ...
- IFC数据模式架构的四个概念层详解说明
IFC模型体系结构由四个层次构成,从下到上依次是 资源层(Resource Layer).核心层(Core Layer).交互层(Interoperability Layer).领域层(Domain ...