题目描述

有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。

输入

第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
100%的数据2<=a,b<=1000,n<=a,n<=b,n<=1000

输出

仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。

样例输入

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2

样例输出

1


题解

二维RMQ

说RMQ过不去的站出来。。。我打肿他的脸。。。

由于查询区域是个正方形,因此我们不用对两维分别倍增,而是一起倍增,令$mx/mn[i][j][k]$表示从$(i,j)$向右下的$2^k*2^k$的区域内的最大/最小值。

预处理方法与一维RMQ一样,只不过变成4个更新1个。。。

然后就没有然后了。。。

时间复杂度$O(ab\log n)$。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1010
using namespace std;
int v[N][N] , mx[11][N][N] , mn[11][N][N] , k;
int main()
{
int a , b , n , i , j , ans = 1 << 30 , maxn , minn;
scanf("%d%d%d" , &a , &b , &n);
for(i = 1 ; i <= a ; i ++ )
for(j = 1 ; j <= b ; j ++ )
scanf("%d" , &v[i][j]) , mx[0][i][j] = mn[0][i][j] = v[i][j];
for(k = 1 ; (1 << k) <= n ; k ++ )
for(i = 1 ; i <= a - (1 << k) + 1 ; i ++ )
for(j = 1 ; j <= b - (1 << k) + 1 ; j ++ )
mx[k][i][j] = max(max(mx[k - 1][i][j] , mx[k - 1][i][j + (1 << (k - 1))]) , max(mx[k - 1][i + (1 << (k - 1))][j] , mx[k - 1][i + (1 << (k - 1))][j + (1 << (k - 1))]))
, mn[k][i][j] = min(min(mn[k - 1][i][j] , mn[k - 1][i][j + (1 << (k - 1))]) , min(mn[k - 1][i + (1 << (k - 1))][j] , mn[k - 1][i + (1 << (k - 1))][j + (1 << (k - 1))]));
k -- ;
for(i = 1 ; i <= a - n + 1 ; i ++ )
for(j = 1 ; j <= b - n + 1 ; j ++ )
maxn = max(max(mx[k][i][j] , mx[k][i][j + n - (1 << k)]) , max(mx[k][i + n - (1 << k)][j] , mx[k][i + n - (1 << k)][j + n - (1 << k)]))
, minn = min(min(mn[k][i][j] , mn[k][i][j + n - (1 << k)]) , min(mn[k][i + n - (1 << k)][j] , mn[k][i + n - (1 << k)][j + n - (1 << k)]))
, ans = min(ans , maxn - minn);
printf("%d\n" , ans);
return 0;
}

【bzoj1047】[HAOI2007]理想的正方形 二维RMQ的更多相关文章

  1. BZOJ1047[HAOI2007]理想的正方形——二维ST表

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...

  2. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  3. [BZOJ1047][HAOI2007]理想的正方形 二维单调队列

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 我们对每矩阵的一列维护一个大小为$n$的单调队列,队中元素为矩阵中元素.然后扫描每一 ...

  4. bzoj1047 [HAOI2007]理想的正方形——二维单调队列

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 就是先对行做一遍单调队列,再对那个结果按列做一遍单调队列即可. 代码如下: #incl ...

  5. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  6. bzoj千题计划215:bzoj1047: [HAOI2007]理想的正方形

    http://www.lydsy.com/JudgeOnline/problem.php?id=1047 先用单调队列求出每横着n个最大值 再在里面用单调队列求出每竖着n个的最大值 这样一个位置就代表 ...

  7. [bzoj1047][HAOI2007]理想的正方形_动态规划_单调队列

    理想的正方形 bzoj-1047 HAOI-2007 题目大意:有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 注释:$2\le a, ...

  8. [Bzoj1047][HAOI2007]理想的正方形(ST表)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 题目虽然有一个n的限制,但求二维区间最值首先想到的还是RMQ,但是如果按照往常RM ...

  9. [BZOJ1047][HAOI2007]理想的正方形(RMQ+DP)

    题意 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 思路 RMQ求 再DP 代码 #include<cstdio> #i ...

随机推荐

  1. 基于 win7下虚拟机的 GNSS-SDR安装过程

    最近在安装 GNSS-SDR软件时,遇到了很多问题,这里回顾了我的安装过程,罗列了所遇到的问题和解决办法.希望后来者不要再踩这些坑了! 首先,在官方文档中看到,GNSS-SDR目前并不支持直接在 Wi ...

  2. Shell学习——变量

    1.在Bash中,每一个变量的值都是字符串 2.查看某个进程的环境变量 cat /proc/$PID/environ | tr '\0' '\n' 3.变量赋值 3.1.var=value,注意var ...

  3. Fiddler(一)

    Fiddler:学习scrapy,不只是满足于网页上爬去信息的成功乐趣,现在开始接触爬去手机信息了,不好解决,知道过程不会轻松,但自己想去尝试.QAQ 写这篇博客是基于以下的几位大神学习笔记,我只是做 ...

  4. git 代码托管使用方法

    Git代码托管 1 准备材料 在coding,github这些代码托管网站上申请一个账户. Linux平台什么需要一个git,如ubuntu 需要 $ sudo apt-get install git ...

  5. HDU3853 概率DP

    LOOPS   Homura wants to help her friend Madoka save the world. But because of the plot of the Boss I ...

  6. HDU 2222 AC自动机(模版题)

    Keywords Search Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others ...

  7. 用go run命令启动main package中的多个文件

    linux: go run *.go windows: go build后运行main.exe

  8. 6.定制10MINS首页1

    原始代码 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <titl ...

  9. 1079: [SCOI2008]着色方案

    链接 思路 首先是dp,如果直接用每个种颜色的剩余个数做状态的话,复杂度为5^15. 由于c<=5,所以用剩余数量的颜色的种类数做状态:f[a][b][c][d][e][last]表示剩余数量为 ...

  10. 程序员最值得听的歌曲TOP10

      No.10 一剪梅 费玉清 - 玉笛公子 <一剪梅>是1984年台湾同名电视剧的片头曲,原唱为林禹胜,经典版本由费玉清演唱,后又成为2009年霍建华.吕一主演电视剧<新一剪梅&g ...