loj10131 暗的连锁
分析
首先我们知道如果在一棵树上加一条边一定会构成一个环,而删掉环上任意一条边都不改变连通性。我们把这一性质扩展到这个题上不难发现如果一条树边不在任意一个新边构成的环里则删掉这条边之后可以删掉任意一条新边,对方案数的贡献是m。而如果它只在一个新边构成的环中则要删除这条边和对应的新边,对方案数的贡献是1。而如果它在至少两个新边构成的环中则无论如何也不能将图分成两半,所以对方案数的贡献为0。在知道这些之后我们考虑如何维护一条边在几个由新边构成的环中,那我们自然考虑到了LCA,对于每一条新边将其LCA路径上的边的值都加1.所以我们只需要维护这个值就行了。据说可以用倍增+差分维护,但我并不会,我是用树剖维护的。我们考虑对于原来的树,除根节点外的每一个点入度一定为1,所以我们不在边上累加答案,而用这条边连接的两个点中深度较深的点来代表这条边,最后用2~n这几个点上的值便可以求出方案数。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int LOG = ;
vector<int>v[];
int ans,id[],col[],n,m;
int son[],siz[],cnt,dep[],fa[],acc[];
inline void dfs(int x,int la){
int maxn=;siz[x]=;
for(int i=;i<v[x].size();i++)
if(v[x][i]!=la){
fa[v[x][i]]=x;
dep[v[x][i]]=dep[x]+;
dfs(v[x][i],x);
siz[x]+=siz[v[x][i]];
if(siz[v[x][i]]>maxn){
maxn=siz[v[x][i]];
son[x]=v[x][i];
}
}
return;
}
inline void dfs2(int x,int ac){
id[x]=++cnt;
acc[x]=ac;
if(!son[x])return;
dfs2(son[x],ac);
for(int i=;i<v[x].size();i++)
if(v[x][i]!=fa[x]&&v[x][i]!=son[x])
dfs2(v[x][i],v[x][i]);
return;
}
inline void update(int le,int ri,int wh,int x,int y,int k){
if(x>y)return;
if(le>=x&&ri<=y){
col[wh]+=k;
return;
}
int mid=(le+ri)>>;
if(col[wh]){
col[wh<<]+=col[wh];
col[wh<<|]+=col[wh];
col[wh]=;
}
if(mid>=x)update(le,mid,wh<<,x,y,k);
if(mid<y)update(mid+,ri,wh<<|,x,y,k);
return;
}
inline int q(int le,int ri,int wh,int pl){
if(le==ri)return col[wh];
int mid=(le+ri)>>,ans;
if(col[wh]){
col[wh<<]+=col[wh];
col[wh<<|]+=col[wh];
col[wh]=;
}
if(mid>=pl)ans=q(le,mid,wh<<,pl);
else ans=q(mid+,ri,wh<<|,pl);
return ans;
}
inline void solve(int x,int y){
while(acc[x]!=acc[y]){
if(dep[acc[x]]<dep[acc[y]])swap(x,y);
update(,n,,id[acc[x]],id[x],);
x=fa[acc[x]];
}
if(id[x]>id[y])swap(x,y);
update(,n,,id[x]+,id[y],);
return;
}
int main(){
int i,j,k;
scanf("%d%d",&n,&m);
for(i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}
fa[]=,dep[]=;
dfs(,);
dfs2(,);
for(i=;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
solve(x,y);
}
for(i=;i<=n;i++){
int x=q(,n,,id[i]);
if(x==)ans+=m;
else if(x==)ans+=;
}
printf("%d\n",ans);
return ;
}
loj10131 暗的连锁的更多相关文章
- LOJ10131暗的连锁
题目描述 原题来自:POJ 3417 Dark 是一张无向图,图中有 N 个节点和两类边,一类边被称为主要边,而另一类被称为附加边.Dark 有 N–1 条主要边,并且 Dark 的任意两个节点之间都 ...
- LOJ #10131 「一本通 4.4 例 2」暗的连锁
LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...
- LOJ10131. 「一本通 4.4 例 2」暗的连锁【树上差分】
LINK solution 很简单的题 你就考虑实际上是对每一个边求出两端节点分别在两个子树里面的附加边的数量 然后这个值是0第二次随便切有m种方案,如果这个值是1第二次只有一种方案 如果这个值是2或 ...
- 倍增法求lca:暗的连锁
https://loj.ac/problem/10131 #include<bits/stdc++.h> using namespace std; struct node{ int to, ...
- LOJ P10131 暗的连锁 题解
每日一题 day27 打卡 Analysis 对于每条非树边 , 覆盖 x 到 LCA 和 y到 LCA 的边 , 即差分算出每个点和父亲的连边被覆盖了多少次 .被覆盖 0 次的边可以和 m 条非树边 ...
- POJ3417 Network暗的连锁 (树上差分)
树上的边差分,x++,y++,lca(x,y)-=2. m条边可以看做将树上的一部分边覆盖,就用差分,x=1,表示x与fa(x)之间的边被覆盖一次,m次处理后跑一遍dfs统计子树和,每个节点子树和va ...
- LuoguP3128 [USACO15DEC]最大流Max Flow (树上差分)
跟LOJ10131暗的连锁 相似,只是对于\(lca\)节点把它和父亲减一 #include <cstdio> #include <iostream> #include < ...
- loj题目总览
--DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活 ...
- CSU训练分类
√√第一部分 基础算法(#10023 除外) 第 1 章 贪心算法 √√#10000 「一本通 1.1 例 1」活动安排 √√#10001 「一本通 1.1 例 2」种树 √√#10002 「一本通 ...
随机推荐
- 微信浏览器HTTP_USER_AGENT判断
微信公众平台开发 微信公众平台开发者 微信公众平台开发模式 微信浏览器 HTTP_USER_AGENT作者:方倍工作室 原文:http://www.cnblogs.com/txw1958/archiv ...
- dilworth定理的通俗讲解
度娘定义:在数学理论中的序理论与组合数学中,Dilworth定理根据序列划分的最小数量的链描述了任何有限偏序集的宽度.其名称取自数学家Robert P. Dilworth. 反链是一种偏序集,其任意两 ...
- php是如何工作的
a:前提条件: apache服务器启动正常工作 b:客户端浏览器在地址栏输入一个程序地栏 按回车发送请求 {请求}http://127.0.0.1/day03/1.php c:apache接收请求,并 ...
- UVA - 1610 Party Games (字符串比较)
给你n(n为偶数)个字符串,让你找出一个长度最短且字典序尽量小的字符串,使得一半的字符串小于等于该串,一半的字符串大于该串. 紫薯上说这道题有坑,但其实思路对了就没什么坑. 很明显,只要取夹在中间两个 ...
- [独孤九剑]Oracle知识点梳理(零)目录
本系列只涉及到Oracle的具体用法,没有上升到理论层面,都是日常工作中总结积累出的零碎知识点,基本上都是一些使用例子,哪天用到了,可以直接复制出来改改. [独孤九剑]Oracle知识点梳理(一)表空 ...
- BZOJ5302: [Haoi2018]奇怪的背包
BZOJ5302: [Haoi2018]奇怪的背包 https://lydsy.com/JudgeOnline/problem.php?id=5302 分析: 方程\(\sum\limits_{i=1 ...
- Photon多人游戏开发教程
http://gad.qq.com/article/detail/26112 PUN介绍 入门 Photon Unity Networking(首字母缩写PUN)是一个Unity多人游戏插件包.它提供 ...
- 蓝桥杯 基础练习 BASIC-19 完美的代价
基础练习 完美的代价 时间限制:1.0s 内存限制:512.0MB 问题描述 回文串,是一种特殊的字符串,它从左往右读和从右往左读是一样的.小龙龙认为回文串才是完美的.现在给你一个串,它不一定 ...
- 蓝桥杯 算法训练 ALGO-145 4-1打印下述图形
算法训练 4-1打印下述图形 时间限制:1.0s 内存限制:256.0MB 问题描述 使用循环结构打印下述图形,打印行数n由用户输入.打印空格时使用"%s"格式,向pri ...
- hihoCoder#1079(线段树+坐标离散化)
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~ 这天小Hi和小Ho所在的学 ...