loj10131 暗的连锁
分析
首先我们知道如果在一棵树上加一条边一定会构成一个环,而删掉环上任意一条边都不改变连通性。我们把这一性质扩展到这个题上不难发现如果一条树边不在任意一个新边构成的环里则删掉这条边之后可以删掉任意一条新边,对方案数的贡献是m。而如果它只在一个新边构成的环中则要删除这条边和对应的新边,对方案数的贡献是1。而如果它在至少两个新边构成的环中则无论如何也不能将图分成两半,所以对方案数的贡献为0。在知道这些之后我们考虑如何维护一条边在几个由新边构成的环中,那我们自然考虑到了LCA,对于每一条新边将其LCA路径上的边的值都加1.所以我们只需要维护这个值就行了。据说可以用倍增+差分维护,但我并不会,我是用树剖维护的。我们考虑对于原来的树,除根节点外的每一个点入度一定为1,所以我们不在边上累加答案,而用这条边连接的两个点中深度较深的点来代表这条边,最后用2~n这几个点上的值便可以求出方案数。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int LOG = ;
vector<int>v[];
int ans,id[],col[],n,m;
int son[],siz[],cnt,dep[],fa[],acc[];
inline void dfs(int x,int la){
int maxn=;siz[x]=;
for(int i=;i<v[x].size();i++)
if(v[x][i]!=la){
fa[v[x][i]]=x;
dep[v[x][i]]=dep[x]+;
dfs(v[x][i],x);
siz[x]+=siz[v[x][i]];
if(siz[v[x][i]]>maxn){
maxn=siz[v[x][i]];
son[x]=v[x][i];
}
}
return;
}
inline void dfs2(int x,int ac){
id[x]=++cnt;
acc[x]=ac;
if(!son[x])return;
dfs2(son[x],ac);
for(int i=;i<v[x].size();i++)
if(v[x][i]!=fa[x]&&v[x][i]!=son[x])
dfs2(v[x][i],v[x][i]);
return;
}
inline void update(int le,int ri,int wh,int x,int y,int k){
if(x>y)return;
if(le>=x&&ri<=y){
col[wh]+=k;
return;
}
int mid=(le+ri)>>;
if(col[wh]){
col[wh<<]+=col[wh];
col[wh<<|]+=col[wh];
col[wh]=;
}
if(mid>=x)update(le,mid,wh<<,x,y,k);
if(mid<y)update(mid+,ri,wh<<|,x,y,k);
return;
}
inline int q(int le,int ri,int wh,int pl){
if(le==ri)return col[wh];
int mid=(le+ri)>>,ans;
if(col[wh]){
col[wh<<]+=col[wh];
col[wh<<|]+=col[wh];
col[wh]=;
}
if(mid>=pl)ans=q(le,mid,wh<<,pl);
else ans=q(mid+,ri,wh<<|,pl);
return ans;
}
inline void solve(int x,int y){
while(acc[x]!=acc[y]){
if(dep[acc[x]]<dep[acc[y]])swap(x,y);
update(,n,,id[acc[x]],id[x],);
x=fa[acc[x]];
}
if(id[x]>id[y])swap(x,y);
update(,n,,id[x]+,id[y],);
return;
}
int main(){
int i,j,k;
scanf("%d%d",&n,&m);
for(i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}
fa[]=,dep[]=;
dfs(,);
dfs2(,);
for(i=;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
solve(x,y);
}
for(i=;i<=n;i++){
int x=q(,n,,id[i]);
if(x==)ans+=m;
else if(x==)ans+=;
}
printf("%d\n",ans);
return ;
}
loj10131 暗的连锁的更多相关文章
- LOJ10131暗的连锁
题目描述 原题来自:POJ 3417 Dark 是一张无向图,图中有 N 个节点和两类边,一类边被称为主要边,而另一类被称为附加边.Dark 有 N–1 条主要边,并且 Dark 的任意两个节点之间都 ...
- LOJ #10131 「一本通 4.4 例 2」暗的连锁
LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...
- LOJ10131. 「一本通 4.4 例 2」暗的连锁【树上差分】
LINK solution 很简单的题 你就考虑实际上是对每一个边求出两端节点分别在两个子树里面的附加边的数量 然后这个值是0第二次随便切有m种方案,如果这个值是1第二次只有一种方案 如果这个值是2或 ...
- 倍增法求lca:暗的连锁
https://loj.ac/problem/10131 #include<bits/stdc++.h> using namespace std; struct node{ int to, ...
- LOJ P10131 暗的连锁 题解
每日一题 day27 打卡 Analysis 对于每条非树边 , 覆盖 x 到 LCA 和 y到 LCA 的边 , 即差分算出每个点和父亲的连边被覆盖了多少次 .被覆盖 0 次的边可以和 m 条非树边 ...
- POJ3417 Network暗的连锁 (树上差分)
树上的边差分,x++,y++,lca(x,y)-=2. m条边可以看做将树上的一部分边覆盖,就用差分,x=1,表示x与fa(x)之间的边被覆盖一次,m次处理后跑一遍dfs统计子树和,每个节点子树和va ...
- LuoguP3128 [USACO15DEC]最大流Max Flow (树上差分)
跟LOJ10131暗的连锁 相似,只是对于\(lca\)节点把它和父亲减一 #include <cstdio> #include <iostream> #include < ...
- loj题目总览
--DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活 ...
- CSU训练分类
√√第一部分 基础算法(#10023 除外) 第 1 章 贪心算法 √√#10000 「一本通 1.1 例 1」活动安排 √√#10001 「一本通 1.1 例 2」种树 √√#10002 「一本通 ...
随机推荐
- 速记JVM内存模型和垃圾回收策略
一.常用JVM参数 -Xms: 初始堆大小 -Xmx: 最大堆-Xmn: 新生代大小 -Xss: 栈容量 -PermSize: 方法区大小 -MaxPermSize: 最大方法区大小 -MaxDire ...
- java关键字---final和transient
首先,说说final. final关键字可以修饰变量,方法,类. final变量: 需求: 1 需要一个永不改变的编译时常量 2 ...
- Java使用指南(1)—— Java下载和安装
Java下载 1.在Oracle的官网中找到相应的
- windows下mysql提示Can't connect to MySQL server on 'localhost'
1.开cmd输入mysqld --defaults-file="c:\Program Files (x86)\MySQL\MySQL Server 5.6\my-default.ini&qu ...
- mac外接键盘修饰键设置
command 和 control 互换,option保持不变即可,差不多可以做到类似windows快捷键的使用习惯.
- BZOJ - 2243 染色 (树链剖分+线段树+区间合并)
题目链接 线段树维护区间连续段个数即可.设lc为区间左端点颜色,rc为区间右端点颜色,则合并两区间的时候,如果左区间右端点和右区间左端点颜色相同,则连续段个数-1. 在树链上的区间合并可以定义一个结构 ...
- http请求在asp.net中的请求过程
当请求一个*.aspx文件的时候,这个请求会被inetinfo.exe进程截获,它判断文件的后缀(aspx)之后,将这个请求转交给 ASPNET_ISAPI.dll,ASPNET_ISAPI.dll会 ...
- Linux 命令行监视显卡使用情况
本文由Suzzz原创,发布于 http://www.cnblogs.com/Suzzz/p/4106581.html ,转载请保留此声明. 在使用GPU做计算,比如跑 Deep Learning代码的 ...
- CF 19E Fairy——树上差分
题目:http://codeforces.com/contest/19/problem/E 去掉一条边,使无向图变成二分图. 该边应该被所有奇环经过,且不被偶环经过. 因为一条非树边一定只在一个环里. ...
- CUDA Pro Tip: Optimized Filtering with Warp-Aggregated Atomics
In this post, I’ll introduce warp-aggregated atomics, a useful technique to improve performance when ...