ScheduledThreadPoolExecutor解析

ScheduledThreadPoolExecutor适用于延时执行,或者周期性执行的任务调度,ScheduledThreadPoolExecutor在实现上继承了ThreadPoolExecutor,所以依然可以将ScheduledThreadPoolExecutor当成ThreadPoolExecutor来使用,但是ScheduledThreadPoolExecutor的功能要强大得多,因为ScheduledThreadPoolExecutor可以根据设定的参数来周期性调度运行,下面是四个和周期性相关的方法:

1.scheduled()

public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor implements ScheduledExecutorService {

    public ScheduledFuture<?> schedule(Runnable command,  long delay, TimeUnit unit) {
if (command == null || unit == null)
       throw new NullPointerException();
RunnableScheduledFuture<?> t = decorateTask(command, new ScheduledFutureTask<Void>(command, null, triggerTime(delay, unit)));
delayedExecute(t);
return t;
} public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) {
if (callable == null || unit == null)
throw new NullPointerException();
RunnableScheduledFuture<V> t = decorateTask(callable,
new ScheduledFutureTask<V>(callable, triggerTime(delay, unit)));
delayedExecute(t);
return t;
}
}
  说明 : 这两个方法只是第一个参数不同,如果你想延时一段时间之后运行一个Runnable,那么使用第一个方法,如果你想延时一段时间然后运行一个Callable,那么使用的第二个方法。

2.scheduleAtFixedRate()

public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,  long initialDelay,  long period, TimeUnit unit)
if (command == null || unit == null)
throw new NullPointerException();
if (period <= 0)
throw new IllegalArgumentException();
ScheduledFutureTask<Void> sft = new ScheduledFutureTask<Void>(command, null, triggerTime(initialDelay, unit), unit.toNanos(period));
RunnableScheduledFuture<Void> t = decorateTask(command, sft);
sft.outerTask = t;
delayedExecute(t);
return t;
}

说明: 该方法会延时一段时间,然后根据设定的参数周期执行Runnable,在执行时将严格按照规划的时间路径来执行,比如周期为2,延时为0,那么执行的序列为0,2,4,6,8....,

3.scheduleWithFixedDelay()

public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit){
if (command == null || unit == null)
throw new NullPointerException();
if (delay <= 0)
throw new IllegalArgumentException();
//保证了任务的延时执行 或周期执行
ScheduledFutureTask<Void> sft = new ScheduledFutureTask<Void>(command, null, triggerTime(initialDelay, unit), unit.toNanos(-delay));
RunnableScheduledFuture<Void> t = decorateTask(command, sft);
sft.outerTask = t;
delayedExecute(t);
return t;
}

说明:该方法会延时一段时间,然后根据设定的参数周期执行Runnable,在执行时将基于上次执行时间来规划下次的执行,也就是在上次执行完成之后再次执行。比如上面的执行序列0,2,4,6,8...,如果第2秒没有被调度执行,而在第三秒的时候才被调度,那么下次执行的时间不是4,而是5,以此类推。

通过上面的代码我们可以发现,前两个方法是类似的,后两个方法也是类似的。前两个方法属于一次性调度,所以period都为0,区别在于参数不同,一个是Runnable,而一个是Callable,它们最后都变为了Callable了,以上四个方法最后都会调用一个方法: delayedExecute(t),下面看一下这个方法:

4.delayedExecute()

private void delayedExecute(RunnableScheduledFuture<?> task) {
if (isShutdown())
reject(task);
else {
super.getQueue().add(task);
if (isShutdown() &&
!canRunInCurrentRunState(task.isPeriodic()) &&
remove(task))
task.cancel(false);
else
ensurePrestart();
}
}

说明:该方法先判断线程池是否被关闭了,如果被关闭了,则拒绝任务的提交,否则将任务加入到任务队列中去等待被调度执行。最后的ensurePrestart的意思是需要确保线程池已经被启动起来了。下面是这个方法:

5.ensurePrestart()

    void ensurePrestart() {
int wc = workerCountOf(ctl.get());
if (wc < corePoolSize)
addWorker(null, true);
else if (wc == 0)
addWorker(null, false);
}

说明:该方法主要是增加了一个没有任务的worker,有什么用呢?我们还记得Worker的逻辑吗?addWorker方法的执行,会触发Worker的run方法的执行,然后runWorker方法就会被执行,而runWorker方法是循环从workQueue中取任务执行的,所以确保线程池被启动起来是重要的,而只需要简单的执行addWorker便会触发线程池的启动流程。对于调度线程池来说,只要执行了addWorker方法,那么线程池就会一直在后台周期性的调度执行任务。

6. ScheduledFutureTask.java

ScheduledFutureTask类图

ScheduledFutureTask是ScheduledThreadPoolExecutor的内部类,它实现了Runnable接口,并重写run方法,而这个run方法是整个类的核心,下面来看一下这个run方法的内容:

public void run() {
boolean periodic = isPeriodic();
if (!canRunInCurrentRunState(periodic))
cancel(false);
else if (!periodic)
ScheduledFutureTask.super.run();
else if (ScheduledFutureTask.super.runAndReset()) {
setNextRunTime();
reExecutePeriodic(outerTask);
}
}
} private void setNextRunTime() {
long p = period;
if (p > 0)
time += p;
else
time = triggerTime(-p);
}

说明:该方法首先判断是否是周期性的任务,如果不是,则直接执行(一次性),否则执行,然后设置下次执行的时间,然后重新调度,等待下次执行。这里有一个方法需要注意,也就是setNextRunTime,上面我们提到scheduleAtFixedRate和scheduleWithFixedDelay在传递参数时不一样,后者将delay值变为了负数,所以此处的处理正好印证了前文所述。

7.reExecutePeriodic方法

reExecutePeriodic方法会将任务再次被调度执行,下面的代码展示了这个功能的实现:

RunnableScheduledFuture<V> outerTask = this;

void reExecutePeriodic(RunnableScheduledFuture<?> task) {
if (canRunInCurrentRunState(true)) {
super.getQueue().add(task);
if (!canRunInCurrentRunState(true) && remove(task))
task.cancel(false);
else
ensurePrestart();
}
}

说明:可以看到,这个方法就是将我们的任务再次放到了workQueue里面,那这个参数是什么?在上面的run方法中我们调用了reExecutePeriodic方法,参数为outerTask,而这个变量是什么?这个变量指向了自己,而this的类型是什么?是ScheduledFutureTask,也就是可以被调度的task,这样就实现了循环执行任务了。

8.ScheduledThreadPoolExecutor

上面的分析已经到了循环执行,但是ScheduledThreadPoolExecutor的功能是周期性执行,所以我们接着分析ScheduledThreadPoolExecutor是如何根据我们的参数走走停停的。这个时候,是应该看一下ScheduledThreadPoolExecutor的构造函数了,我们来看一个最简单的构造函数:

 public ScheduledThreadPoolExecutor(int corePoolSize) { 
   super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS, new DelayedWorkQueue());
}
我们知道ScheduledThreadPoolExecutor的父类是ThreadPoolExecutor,所以这里的super其实是ThreadPoolExecutor的构造函数,在ThreadPoolExecutor的构造函数中有this.workQueue = workQueue,则在ScheduledThreadPoolExecutor中,workQueue是一个DelayedWorkQueue类型的队列,上面的分析我们明白了ScheduledThreadPoolExecutor是如何循环执行任务的,而这里我们明白了ScheduledThreadPoolExecutor使用DelayedWorkQueue来达到延迟的目标,所以组合起来,就可以实现ScheduledThreadPoolExecutor周期性执行的目标。下面我们来看一下DelayedWorkQueue是如何做到延迟的吧,上文中提到一个方法:getTask,这个方法的作用是从workQueue中取出任务来执行,而在ScheduledThreadPoolExecutor里面,getTask方法是从DelayedWorkQueue中取任务的,而取任务无非两个方法:poll或者take,下面我们对DelayedWorkQueue的take方法来分析一下:

9.DelayedWorkQueue

DelayedWorkQueue是ScheduledThreadPoolExecutor的内部类,

1. take()方法代码如下

public RunnableScheduledFuture<?> take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
RunnableScheduledFuture<?> first = queue[0];
if (first == null)
available.await();
else {
long delay = first.getDelay(NANOSECONDS);
if (delay <= 0)
return finishPoll(first);
first = null; // don't retain ref while waiting
if (leader != null)
available.await();
else {
Thread thisThread = Thread.currentThread();
leader = thisThread;
try {
available.awaitNanos(delay);
} finally {
if (leader == thisThread)
leader = null;
}
}
}
}
} finally {
if (leader == null && queue[0] != null)
available.signal();
lock.unlock();
}
}

在for循环里面,首先从queue中获取第一个任务,然后从任务中取出延迟时间,而后使用available变量来实现延迟效果。

private final Condition available = lock.newCondition();

queue队列它是一个RunnableScheduledFuture类型的数组

private RunnableScheduledFuture<?>[] queue = new RunnableScheduledFuture<?>[INITIAL_CAPACITY];

2.add()方法

public boolean add(Runnable e) {
return offer(e);
} public boolean offer(Runnable x) {
if (x == null)
throw new NullPointerException();
RunnableScheduledFuture<?> e = (RunnableScheduledFuture<?>)x;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = size;
if (i >= queue.length)
grow();
size = i + 1;
if (i == 0) {
queue[0] = e;
setIndex(e, 0);
} else {
siftUp(i, e);
}
if (queue[0] == e) {
leader = null;
available.signal();
}
} finally {
lock.unlock();
}
return true;
}

说明:add方法直接转到了offer方法,该方法中,首先判断数组的容量是否足够,如果不够则grow,增长的策略如下:

int newCapacity = oldCapacity + (oldCapacity >> 1); // grow 50%

每次增长50%,入戏下去。增长完成后,如果这是第一个元素,则放在坐标为0的位置,否则,使用siftUp操作,下面是该方法的内容:

3.siftUp()

private void siftUp(int k, RunnableScheduledFuture<?> key) {
while (k > 0) {
int parent = (k - 1) >>> 1;
RunnableScheduledFuture<?> e = queue[parent];
if (key.compareTo(e) >= 0)
break;
queue[k] = e;
setIndex(e, k);
k = parent;
}
queue[k] = key;
setIndex(key, k);
}

这个数组实现了堆这种数据结构,使用对象比较将最需要被调度执行的RunnableScheduledFuture放到数组的前面,而这得力于compareTo方法,下面是RunnableScheduledFuture类的compareTo方法的实现,主要是通过延迟时间来做比较。

RunnableScheduledFuture.compareTo()

public int compareTo(Delayed other) {
if (other == this) // compare zero if same object
return 0;
if (other instanceof ScheduledFutureTask) {
ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
long diff = time - x.time;
if (diff < 0)
return -1;
else if (diff > 0)
return 1;
else if (sequenceNumber < x.sequenceNumber)
return -1;
else
return 1;
}
long diff = getDelay(NANOSECONDS) - other.getDelay(NANOSECONDS);
return (diff < 0) ? -1 : (diff > 0) ? 1 : 0;
}

上面是生产元素,下面来看一下消费数据。在上面我们提到的take方法中,使用了一个方法如下:

private RunnableScheduledFuture<?> finishPoll(RunnableScheduledFuture<?> f) {
int s = --size;
RunnableScheduledFuture<?> x = queue[s];
queue[s] = null;
if (s != 0)
siftDown(0, x);
setIndex(f, -1);
return f;
}

这个方法中调用了一个方法siftDown,这个方法如下:

private void siftDown(int k, RunnableScheduledFuture<?> key) {
int half = size >>> 1;
while (k < half) {
int child = (k << 1) + 1;
RunnableScheduledFuture<?> c = queue[child];
int right = child + 1;
if (right < size && c.compareTo(queue[right]) > 0)
c = queue[child = right];
if (key.compareTo(c) <= 0)
break;
queue[k] = c;
setIndex(c, k);
k = child;
}
queue[k] = key;
setIndex(key, k);
}
说明:Replaces first element with last and sifts it down.  Call only when holding lock.
 
     总结一下,当我们向queue插入任务的时候,会发生siftUp方法的执行,这个时候会把任务尽量往根部移动,而当我们完成任务调度之后,会发生siftDown方法的执行,与siftUp相反,siftDown方法会将任务尽量移动到queue的末尾。总之,大概的意思就是queue通过compareTo实现了类似于优先级队列的功能。 

在上面的take方法里面,首先获取了delay,然后再使用available来做延迟效果,其中delay是通过RunnableScheduledFuture类的getDelay方法获取,RunnableScheduledFuture类实现了Delayed接口,而Delayed接口里面的唯一方法是getDelay,我们到RunnableScheduledFuture里面看一下这个方法的具体实现:

public long getDelay(TimeUnit unit) {
return unit.convert(time - now(), NANOSECONDS);
}

time是我们设定的下次执行的时间,所以延迟就是(time - now()),

到此为止,我们梳理了ScheduledThreadPoolExecutor是如何实现周期性调度的,首先分析了它的循环性,然后分析了它的延迟效果。

Java多线程系列 JUC线程池06 线程池原理解析(五)的更多相关文章

  1. Java多线程系列--“JUC线程池”06之 Callable和Future

    概要 本章介绍线程池中的Callable和Future.Callable 和 Future 简介示例和源码分析(基于JDK1.7.0_40) 转载请注明出处:http://www.cnblogs.co ...

  2. Java多线程系列--“JUC线程池”02之 线程池原理(一)

    概要 在上一章"Java多线程系列--“JUC线程池”01之 线程池架构"中,我们了解了线程池的架构.线程池的实现类是ThreadPoolExecutor类.本章,我们通过分析Th ...

  3. Java多线程系列--“JUC线程池”03之 线程池原理(二)

    概要 在前面一章"Java多线程系列--“JUC线程池”02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包括:线程池示例参考代 ...

  4. Java多线程系列--“JUC线程池”04之 线程池原理(三)

    转载请注明出处:http://www.cnblogs.com/skywang12345/p/3509960.html 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基 ...

  5. Java多线程系列--“JUC线程池”05之 线程池原理(四)

    概要 本章介绍线程池的拒绝策略.内容包括:拒绝策略介绍拒绝策略对比和示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3512947.html 拒绝策略 ...

  6. Java多线程系列--“JUC锁”06之 Condition条件

    概要 前面对JUC包中的锁的原理进行了介绍,本章会JUC中对与锁经常配合使用的Condition进行介绍,内容包括:Condition介绍Condition函数列表Condition示例转载请注明出处 ...

  7. Java多线程系列--“基础篇”07之 线程休眠

    概要 本章,会对Thread中sleep()方法进行介绍.涉及到的内容包括:1. sleep()介绍2. sleep()示例3. sleep() 与 wait()的比较 转载请注明出处:http:// ...

  8. Java多线程系列--“基础篇”10之 线程优先级和守护线程

    概要 本章,会对守护线程和线程优先级进行介绍.涉及到的内容包括:1. 线程优先级的介绍2. 线程优先级的示例3. 守护线程的示例 转载请注明出处:http://www.cnblogs.com/skyw ...

  9. Java多线程系列--“JUC集合”06之 ConcurrentSkipListSet

    概要 本章对Java.util.concurrent包中的ConcurrentSkipListSet类进行详细的介绍.内容包括:ConcurrentSkipListSet介绍ConcurrentSki ...

  10. Java多线程系列--“JUC锁”09之 CountDownLatch原理和示例

    概要 前面对"独占锁"和"共享锁"有了个大致的了解:本章,我们对CountDownLatch进行学习.和ReadWriteLock.ReadLock一样,Cou ...

随机推荐

  1. spring mvc controller中的异常封装

    http://abc08010051.iteye.com/blog/2031992 一直以来都在用spring mvc做mvc框架,我使用的不是基于注解的,还是使用的基于xml的,在controlle ...

  2. Install Erlang and Elixir in CentOS 7

    In this tutorial, we will be discussing about how to install Erlang and Elixir in CentOS 7 minimal s ...

  3. Android NDK开发篇(四):Java与原生代码通信(原生方法声明与定义与数据类型)

    Java与原生代码通信涉及到原生方法声明与定义.数据类型.引用数据类型操作.NIO操作.訪问域.异常处理.原生线程 1.原生方法声明与定义 关于原生方法的声明与定义在上一篇已经讲一点了,这次具体分析一 ...

  4. vim 命令行使用技巧

    1. <Ctrl-U> <Ctrl-K> 删除光标到开头的输入 2. <Ctrl-W> 删除最近输入的单词 3. <Ctrl-H> 删除光标之前的一个字 ...

  5. linux下OpenSSL的RSA密钥生成

    工具的安装: 一.源码安装 OpenSSL Version:openssl-1.0.0e.tar.gz ------------------------安装: 1.将下载的压缩包放在根目录, 2.在文 ...

  6. Android环境变量的设置(详细图解版)

    分类: Android初学学习笔记2011-07-10 09:47 99479人阅读 评论(0) 收藏 举报 androidtoolspathcmd 查阅了网上很多的资料但是对于环境变量设置介绍的不够 ...

  7. 学习IIS & MVC的运行原理

    我一直疑惑于以下问题,从客户端发出一个请求,请求到达服务器端是怎样跟iis衔接起来的,而iis又是怎样读取我发布的代码的,并返回服务器上的文件.这其中是怎样的一个处理过程. 1:当你从浏览器中输入一个 ...

  8. nginx大量TIME_WAIT的解决办法 netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'

    vi /etc/sysctl.conf net.ipv4.tcp_syncookies = 1 net.ipv4.tcp_tw_reuse=1 #让TIME_WAIT状态可以重用,这样即使TIME_W ...

  9. Agri-Net - poj 1258 (Prim 算法)

      Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44373   Accepted: 18127 Description F ...

  10. Wormholes - poj 3259 (Bellman-Ford算法)

      Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 34934   Accepted: 12752 Description W ...