题意

给一个\(n\)个点的图,标号为\(1\)到\(n\),进行\(m\)次连边\((a,b,c,d,w)\):

for i in range[a,b]:
for j in range[c,d]:
add_edge(i,j,w)

有\(K\)次机会可以消除一条边的权值(即走过但不算),问\(1\)到\(n\)的最短路。

\(n\le 5\times 10^4,m\le 10^4,0\le K\le 10,w\le 10^3\)

分析

\(K\)次消除机会用一个类似dp的东西处理(也被叫做分层图最短路),\(d[i][j]\)表示从1走到\(i\)点用了\(j\)次机会的最短路,显然这个东西是可以dp的。现在我们只需要考虑如何求最短路。

这个连边方式是区间对区间连同一种边,跟bzoj3218的可持久化线段树维护网络流的连边有点像。考虑线段树。

一个区间可以表示为线段树上的最多\(\log n\)个节点。我们一开始给线段树编号,用它来维护连边不就好啦!

一开始是这样想的,但其实只开一颗线段树是不对的,因为无法上下走,于是取看题解。

我们有两颗线段树,一颗连出去,一颗连入,分别称为出线段树和入线段树。出线段树的子节点连到父亲,入线段树的父亲连到子节点。然而如果只是这样的话,我们只能走一条边——从入线段树的某个点走到出线段树的点之后就回不来了!

所以我们把入线段树的每个点连到出线段树的相同位置的点即可。

每次连边是否需要\(\log ^2n\)条边呢?其实不需要,我们可以对每次连边建一个中间节点,出入线段树分别连出,从这个点连入即可。

这样总点数是\(4n+m\),总边数最大为\(2m\log n+6n\),所以使用优先队列优化Dijkstra求最短路,总复杂度为\(O(Km\log ^2n)\) 。

这题学习了两个线段树维护出入以及中间节点减少边数的方法(可能还有分层图最短路吧)。

代码

#include<cstdio>
#include<cctype>
#include<cstring>
#include<queue>
#include<utility>
#include<algorithm>
using namespace std;
int read() {
int x=0,f=1;
char c=getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=5e4+1;
const int maxm=1e4+1;
const int maxp=4e5+1;
const int maxe=2e6+1;
const int maxk=11;
int n,m,k,ids=0,d[maxk][maxp],inf;
typedef pair<int,pair<int,int> > data;
inline int Min(int &x,int y) {x=min(x,y);}
priority_queue<data,vector<data>,greater<data> > q;
struct Graph {
struct edge {
int v,w,nxt;
} e[maxe];
int h[maxp],tot;
Graph ():tot(0) {}
void add(int u,int v,int w) {
e[++tot]=(edge){v,w,h[u]};
h[u]=tot;
}
void dj(int S,int T) {
d[0][S]=0;
q.push(make_pair(0,make_pair(S,0)));
while (!q.empty()) {
data dat=q.top();
q.pop();
int x=dat.second.first,tim=dat.second.second;
for (int i=h[x],v=e[i].v;i;i=e[i].nxt,v=e[i].v) {
if (tim<k && d[tim+1][v]>d[tim][x]) {
d[tim+1][v]=d[tim][x];
q.push(make_pair(d[tim+1][v],make_pair(v,tim+1)));
}
if (d[tim][v]>d[tim][x]+e[i].w) {
d[tim][v]=d[tim][x]+e[i].w;
q.push(make_pair(d[tim][v],make_pair(v,tim)));
}
}
}
}
} G;
struct SGT {
int id[maxn<<2];
void build(int x,int l,int r,bool op) {
id[x]=++ids;
if (l==r) return;
int mid=(l+r)>>1;
build(x<<1,l,mid,op),build(x<<1|1,mid+1,r,op);
op?(G.add(id[x],id[x<<1],0),G.add(id[x],id[x<<1|1],0)):(G.add(id[x<<1],id[x],0),G.add(id[x<<1|1],id[x],0));
}
void link(int x,int L,int R,int l,int r,int p,int w,bool op) {
if (L==l && R==r) {
op?G.add(p,id[x],w):G.add(id[x],p,w);
return;
}
int mid=(L+R)>>1;
if (r<=mid) link(x<<1,L,mid,l,r,p,w,op); else
if (l>mid) link(x<<1|1,mid+1,R,l,r,p,w,op); else
link(x<<1,L,mid,l,mid,p,w,op),link(x<<1|1,mid+1,R,mid+1,r,p,w,op);
}
int ID(int x,int l,int r,int p) {
if (l==r) return id[x];
int mid=(l+r)>>1;
return p<=mid?ID(x<<1,l,mid,p):ID(x<<1|1,mid+1,r,p);
}
} a,b;
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
read(),n=read(),m=read(),k=read();
a.build(1,1,n,false);
int tmp=ids;
b.build(1,1,n,true);
for (int i=1;i<=tmp;++i) G.add(tmp+i,i,0);
while (m--) {
int l1=read(),r1=read(),l2=read(),r2=read(),w=read();
++ids;
a.link(1,1,n,l1,r1,ids,w,false);
b.link(1,1,n,l2,r2,ids,0,true);
++ids;
a.link(1,1,n,l2,r2,ids,w,false);
b.link(1,1,n,l1,r1,ids,0,true);
}
memset(d,0x3f,sizeof d),inf=d[0][0];
int S=a.ID(1,1,n,1),T=b.ID(1,1,n,n);
G.dj(S,T); // d[S][0]=0
int ans=inf;
for (int i=0;i<=k;++i) Min(ans,d[i][T]);
ans==inf?puts("Yww is our red sun!"):printf("%d\n",ans);
return 0;
}

HDU5669-Road的更多相关文章

  1. HDU5669 Road 分层最短路+线段树建图

    分析:(官方题解) 首先考虑暴力,显然可以直接每次O(n^2) ​的连边,最后跑一次分层图最短路就行了. 然后我们考虑优化一下这个连边的过程 ,因为都是区间上的操作,所以能够很明显的想到利用线段树来维 ...

  2. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  3. POJ 3204 Ikki's Story I - Road Reconstruction

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  4. Codeforces #380 div2 C(729C) Road to Cinema

    C. Road to Cinema time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  5. dp or 贪心 --- hdu : Road Trip

    Road Trip Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit users: 29 ...

  6. HDU 1598 find the most comfortable road(最小生成树之Kruskal)

    题目链接: 传送门 find the most comfortable road Time Limit: 1000MS     Memory Limit: 32768 K Description XX ...

  7. 三分 --- CSU 1548: Design road

    Design road Problem's Link:   http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1548 Mean: 目的:从(0,0)到 ...

  8. hdu 5861 Road 两棵线段树

    传送门:hdu 5861 Road 题意: 水平线上n个村子间有 n-1 条路. 每条路开放一天的价格为 Wi 有 m 天的操作,每天需要用到村子 Ai~Bi 间的道路 每条路只能开放或关闭一次. ( ...

  9. HDU4081 Qin Shi Huang's National Road System(次小生成树)

    枚举作为magic road的边,然后求出A/B. A/B得在大概O(1)的时间复杂度求出,关键是B,B是包含magic road的最小生成树. 这么求得: 先在原图求MST,边总和记为s,顺便求出M ...

  10. 杭电 1595 find the safest road

    find the safest road Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

随机推荐

  1. 20155316 2016-2017-2 《Java程序设计》第3周学习总结

    教材学习内容总结 类:创建类.使用类 基本类类型与类类型 数组 封装的概念 重载 类语法 static成员 教材学习中的问题和解决过程 1.既然数组在JAVA中就是对象,那么int[] 是否是一个类呢 ...

  2. 20155320 2016-2017-2《Java程序设计》课程总结

    20155320 2016-2017-2<Java程序设计>课程总结 (按顺序)每周作业链接汇总 预备作业1:第一次写随笔,回答了老师的一些问题,写下了期望和目标 预备作业2:总结了一下自 ...

  3. BZOJ2039_employ人员雇佣_KEY

    题目传送门 网络流,求最小割. 设tot为所有盈利的和,即所有人(不花钱)雇佣. 对于S->i建一条容量为c[i]的边,i->j建一条S[i][j]*2的边,之所以这样建是因为如果不选这个 ...

  4. PostgreSQL的checkpoint能否并行

    对于此问题,在社区进行了提问,并得到了一些大牛的解答: http://postgresql.1045698.n5.nabble.com/Can-checkpoint-creation-be-paral ...

  5. SaltStack入门篇(三)之数据系统Grains、Pillar

    1.什么是Grains? Grains是saltstack的组件,用于收集salt-minion在启动时候的信息,又称为静态信息.可以理解为Grains记录着每台Minion的一些常用属性,比如CPU ...

  6. 关于C语言中内存的3个问题

    1.程序为什么需要内存? 计算机程序 = 代码 + 结果,从宏观上理解,代码就是动作,而数据被动作加工,最终返回结果.程序是被放在内存中运行的,并且需要内存来存储一些临时变量,因此,对于程序来说,内存 ...

  7. json_encode替代函数

    <?php   function jsonEncode($var) {     if (function_exists('json_encode')) {         return json ...

  8. 关于购买Redis服务器:腾讯云、阿里云还是华为云?

    个人分类: redis使用 编辑 新年伊始,很多商家都开始进行新年产品大促销,在分布是缓存Redis领域,几家大公司也是打得如火如荼,各有千秋啊. 现在市场上比较有口碑的商家有腾讯云.阿里云.华为云三 ...

  9. openstack系列文章(三)

    学习openstack的系列文章-glance glance 基本概念 glance 架构 openstack CLI Troubleshooting 1. glance 基本概念 在 opensta ...

  10. java使用jacob将office文档转换为PDF格式

    jacob 包下载地址: http://sourceforge.net/projects/jacob-project/ 下载后,将jacob 与 jacob-1.19-x64.dll放到安装jdk目录 ...