【题解】JSOI2011分特产
没sa可suo的,sui题一道……
#include <bits/stdc++.h>
using namespace std;
#define maxn 3000
#define mod 1000000007
#define int long long
int n, m, ans, a[maxn], C[maxn][maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void Pre()
{
for(int i = ; i < maxn; i ++) C[i][] = ;
for(int i = ; i < maxn; i ++)
for(int j = ; j < maxn; j ++)
C[i][j] = (C[i - ][j - ] + C[i - ][j]) % mod;
} int Up(int &x, int y) { x = (x + y) % mod; }
int Get(int x)
{
int ret = ;
for(int i = ; i <= m; i ++)
ret = ret * C[n - x + a[i] - ][n - x - ] % mod;
return ret;
} signed main()
{
n = read(), m = read(); Pre();
for(int i = ; i <= m; i ++) a[i] = read();
for(int i = ; i <= n; i ++)
{
int t = C[n][i] * Get(i) % mod;
Up(ans, (i & ) ? -t : t);
}
printf("%lld\n", (ans + mod) % mod);
return ;
}
【题解】JSOI2011分特产的更多相关文章
- 题解-JSOI2011 分特产
题面 JSOI2011 分特产 有 \(n\) 个不同的盒子和 \(m\) 种不同的球,第 \(i\) 种球有 \(a_i\) 个,用光所有球,求使每个盒子不空的方案数. 数据范围:\(1\le n, ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- 4710: [Jsoi2011]分特产
4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...
- 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 99 Solved: 65 Description JYY 带 ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- BZOJ 4710 [Jsoi2011]分特产 解题报告
4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...
- ●BZOJ 4710 [Jsoi2011]分特产
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...
随机推荐
- 【bzoj4827】[Hnoi2017]礼物 FFT
题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天 ...
- SRM 563 500pts SpellCards
SpellCards 题意: 有n张符卡排成一个队列,每张符卡有两个属性,等级li和伤害di. 两种操作: 1.把队首的符卡移动到队尾:2.使用队首的符卡,对敌人造成di点伤害,并丢弃队首的li张符卡 ...
- bootstrap 4 panels已被card替换
https://www.zhihu.com/question/34838389?sort=created 解决问题的思路不对,不应该搜不到就各种着急,应该理清思路, 既然 bootstrap4没有了3 ...
- Struts 2(七):国际化
基于Struts 2的Web应用国际化开发非常简单,其中Struts 2的国际化包括如下几部分:校验提示信息国际化.类型转换提示信息国际化.Action信息国际化以及JSP页面国际化. 第一节 JSP ...
- 一、EnterpriseFrameWork框架总体介绍
EnterpriseFrameWork框架是自己在工作之余的得意之作,经过了几年时间的不断重构,现在终于有了现在的样子:刚开始只是为了方便开发WEB系统,随着项目越做越多,新的功能也就不断补充进去,补 ...
- VIN码/车架号的详解,车架号识别,VIN码识别,OCR车架号识别能带来什么
各位车主在车检时不知道有没有注意到一件事,就是工作人员会打开车前盖在前围钢板上拓一张条码.下面来给大家介绍一下,这张条码就是VIN号,俗称钢印号,就像我们每个人都有自己的身份证号码一样,这也是汽车界的 ...
- Linux 安装Zookeeper<单机版>(使用Mac远程访问)
阅读本文需要先阅读安装Zookeeper<准备> 新建目录 mkdir /usr/local/zookeeper 解压 cd zookeeper压缩包所在目录 tar -xvf zooke ...
- Unity学习笔记(1)
transform: transform是GameObject的一个默认的组件,其包含着该对象的几种属性,坐标(Position)以及旋转角度(Rotation)和尺寸(Scale). transfo ...
- Linux系统网络安装——基于pxe+dhcp+nfs+tftp+kickstart
原文发表于:2010-09-05 转载至cu于:2012-07-21 一.原理简介 PXE(preboot execute environment)工作于Client/Server的网络模式,支持工作 ...
- jquery选择器 直观实验
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...