bzoj4037 [HAOI2015]数字串拆分
Description
Input
第一行输入一个字符串,第二行输入m
Output
仅输出一个数表示答案
Sample Input
3
Sample Output
HINT
对于100%的数据,字符串长度不超过500,m<=5
正解:$dp$+矩阵乘法。
矩阵可以用来$dp$转移。。
设$g[i]$表示$i$的拆分数,那么$g[i]=\sum_{j=0}^{m}g[i-j]$,这显然可以用矩阵表示,设转移矩阵为$A$。
然后我们设$f[i]$表示字符串到$i$的方案数。我们可以发现$A^{a1+a2+...+ak}=A^{a1}*A^{a2}*...*A^{ak}$。
那么我们把$f$也变成矩阵,则$f[i]=\sum_{j=0}^{i-1}f[j]*A^{s[j+1]...s[i]}$,因为矩阵可以加法,满足分配律,所以这里是对的。
预处理出$(A^{10^{r}})^{k}$,然后直接$dp$即可。复杂度$O(m^{3}*n^{2})$。
#include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define rhl (998244353) using namespace std; struct data{ int m[][]; }A[][],f[],now; char s[];
int n,m; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void add(data &a,data b){
for (RG int i=;i<=m;++i)
for (RG int j=;j<=m;++j){
a.m[i][j]+=b.m[i][j];
if (a.m[i][j]>=rhl) a.m[i][j]-=rhl;
}
return;
} il data mul(data a,data b){
data c; memset(c.m,,sizeof(c.m));
for (RG int i=;i<=m;++i)
for (RG int j=;j<=m;++j)
for (RG int k=;k<=m;++k)
c.m[i][k]=(1LL*a.m[i][j]*b.m[j][k]+c.m[i][k])%rhl;
return c;
} int main(){
#ifndef ONLINE_JUDGE
freopen("split.in","r",stdin);
freopen("split.out","w",stdout);
#endif
scanf("%s",s+),n=strlen(s+),m=gi();
for (RG int i=;i<=m;++i)
for (RG int j=;j<=m;++j) A[][].m[i][j]=i==j;
for (RG int i=;i<m;++i) A[][].m[i+][i]=;
for (RG int i=;i<=m;++i) A[][].m[i][m]=;
for (RG int i=;i<;++i) A[][i]=mul(A[][i-],A[][]);
for (RG int i=;i<=n;++i){
A[i][]=A[][],A[i][]=mul(A[i-][],A[i-][]);
for (RG int j=;j<;++j) A[i][j]=mul(A[i][j-],A[i][]);
}
f[]=A[][];
for (RG int i=;i<=n;++i){
now=A[][s[i]-''];
for (RG int j=i-;~j;--j){
add(f[i],mul(f[j],now));
if (j) now=mul(A[i-j][s[j]-''],now);
}
}
cout<<f[n].m[m][m]; return ;
}
bzoj4037 [HAOI2015]数字串拆分的更多相关文章
- BZOJ4037:[HAOI2015]数字串拆分——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4037 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时 ...
- [HAOI2015]数字串拆分
题目描述 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导0),将他们加 ...
- 洛谷3176 [HAOI2015]数字串拆分 (矩阵乘法+dp)
qwq真的是一道好题qwq自己做基本是必不可能做出来的. 首先,如果这个题目只是求一个\(f\)数组的话,那就是一道裸题. 首先,根据样例 根据题目描述,我们能发现其实同样数字的不同排列,也是属于不同 ...
- BZOJ 4037 [HAOI2015]数字串拆分 ——动态规划
拆分的情况下,发现f数组本身并不是很好递推. 因为f(123)=f(123)/f(12+3)/f(1+2+3). 然后考虑f可以怎么表示f(n)=a0*M^n M为转移矩阵. 然后发现 f(x+y)= ...
- bzoj 4037: [HAOI2015]数字串拆分【dp+矩阵加速】
首先f长得就很像能矩阵优化的,先构造转移矩阵(这里有一点神奇的地方,我看网上的blog和我构造的矩阵完全不一样还以为我的构造能力又丧失了,后来惊奇的发现我把那篇blog里的构造矩阵部分换成我的构造方式 ...
- loj#2128. 「HAOI2015」数字串拆分 矩阵乘法
目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...
- 【LOJ】#2128. 「HAOI2015」数字串拆分
题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...
- 解决 PHPExcel 长数字串显示为科学计数
解决 PHPExcel 长数字串显示为科学计数 在excel中如果在一个默认的格中输入或复制超长数字字符串,它会显示为科学计算法,例如身份证号码,解决方法是把表格设置文本格式或在输入前加一个单引号. ...
- Openjudge 1.13-40 提取数字串按数值排序
40:提取数字串按数值排序 查看 总时间限制: 1000ms 内存限制: 65536kB 描述 给定一个字符串,请将其中的所有数字串提取,并将每个数字串作为整数看待(假设可以用int 表示),按从 ...
随机推荐
- 字符编码unicode,utf-8和ascii
Ascii编码 由于计算机是美国人发明的,因此,最早只有127个字符被编码到计算机里,也就是大小写英文字母.数字和一些符号,这个编码表被称为ASCII编码,比如大写字母A的编码是65,小写字母z的编码 ...
- 如何应用ASP.NET MVC中的分部视图
概述: 在ASP.NET Web Form的开发经验中,对于User Control使用比较频繁,可以减少重复的代码,利于页面模块化,这个概念也被引入了ASP.NET MVC.即“分部视图”. 1.创 ...
- 如鹏网学习笔记(十一)JQuery
一.jQuery简介 jQuery是一个JavaScript库,特性丰富,包含若干对象和很多函数,可以替代传统DOM编程的操作方式和操作风格 jQuery通过对DOM API.DOM事件的封装,提供了 ...
- [javaSE] IO流(FIle对象递归文件列表)
获取File对象,new出来,构造参数:String目录名 调用File对象的list()方法,获取String[]数组文件名称 循环数组,列出所有文件包含隐藏文件 递归列出所有的数据 定义一个静态方 ...
- http_proxy_module 模块(proxy_pass 指令)
1. proxy_pass 指令介绍 该指令属于 http_proxy_module, http_proxy_module 模块可以将请求转发到另一台服务器. 在 nginx 反向代理是,会通过 lo ...
- 理解B+树算法和Innodb索引
一.innodb存储引擎索引概述: innodb存储引擎支持两种常见的索引:B+树索引和哈希索引. innodb支持哈希索引是自适应的,innodb会根据表的使用情况自动生成哈希索引. B+树索引就是 ...
- BZOJ1996 [Hnoi2010] 合唱队
Description Input Output Sample Input 4 1701 1702 1703 1704 Sample Output 8 HINT Solution 令$f_{i,j}$ ...
- redux、immutablejs和mobx性能对比(三)
四.我的结论 通过第三部分的数据数据分析,我觉得我们可以得到以下结论: 无论是在开发环境还是测试环下页面的首次加载速度结果都是:redux>immutablejs>mobx,但是他们之间的 ...
- 关于 img 父容器比img图片要多4个像素的问题
问题背景: <div> <img src="" /> </div> 图片和div 的宽度相同,div的高度等于图片的高度 结果发现div的高度 ...
- 微信分享BUG
WXFileObject fileObject = new WXFileObject(); fileObject.setContentLengthLimit(1024 * 1024 * 10); fi ...