问题源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

我们把柱子依次命名为A,B,C

从只有一个圆盘考虑:直接就是A-->C

两个圆盘的时候就是:A-->B,A-->C,B-->C

三个圆盘的时候就是:A-->C,A-->B,C-->B,A-->C,B-->A,B-->C,A-->C

其中标红色的步骤就是将原有最底下的圆盘从A-->C,执行这个步骤前我们可以发现实际上是先将A最底下大盘上的所有圆盘(即n-1)都移到B上,接着执行A-->C,最后再将B上n-1个圆盘从B移到C上,不难发现要将n-1个圆盘从B移到C上,也就是要借助A,将n-2个圆盘从B移到A上,这样才能将B上最底下圆盘移到C上。

def _move(n, a, b, c):
if n == 1:                  # 只有一个圆盘时直接从A-->C
print('move:', a, '-->', c)
else:
_move(n - 1, a, c, b)         # 现将n-1个圆盘从A-->B
_move(1, a, b, c)            # 接着将原有A中最底下圆盘从A-->C
_move(n - 1, b, a, c)         # 最后借助A,将B中n-1个圆盘从B-->C m = int(input('请输入hanoi塔个数:'))
print('移动的步骤如下:')
_move(m, 'A', 'B', 'C')

用函数递归的方法解决古印度汉诺塔hanoi问题的更多相关文章

  1. "递归"实现"约瑟夫环","汉诺塔"

    一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开 ...

  2. 关于C语言解决汉诺塔(hanoi)问题

    C语言解决汉诺塔问题 汉诺塔是典型的递归调用问题: hanoi简介:印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣 ...

  3. 汉诺塔算法的递归与非递归的C以及C++源代码

    汉诺塔(又称河内塔)问题其实是印度的一个古老的传说. 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 个小, ...

  4. 汉诺塔算法c++源代码(递归与非递归)[转]

     算法介绍: 其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n - 1(有兴趣的可以自己证明试试看).后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了.首先把三根柱 ...

  5. 【Python学习之七】递归——汉诺塔问题的算法理解

    汉诺塔问题 汉诺塔的移动可以用递归函数非常简单地实现.请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的 ...

  6. [Python3 练习] 005 汉诺塔1 递归解法

    题目:汉诺塔 I (1) 描述 传说,在世界中心贝拿勒斯(在印度北部)的圣庙外有左中右三根足够长的柱子(塔) 左边柱子上套着 64 片金片,金片按"上小下大"排,其余两根是空柱子 ...

  7. PTA 汉诺塔的非递归实现(C 语言)

    借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c), 即将N个盘子从起始柱(标记为“a”)通过借助柱(标记为“b”)移动到目标柱(标记为“c”), 并保证每个移动符合汉诺塔问题的要求 ...

  8. hanoi(汉诺塔)递归实现

    汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序 ...

  9. JAVA递归算法及经典递归例子 对于这个汉诺塔问题

    前言:递归(recursion):递归满足2个条件 1)有反复执行的过程(调用自身) 2)有跳出反复执行过程的条件(递归出口) 第一题:汉诺塔 对于这个汉诺塔问题,在写递归时,我们只需要确定两个条件: ...

随机推荐

  1. Manacher(最长递减回文串)

    http://acm.hdu.edu.cn/showproblem.php?pid=4513 Problem Description 吉哥又想出了一个新的完美队形游戏! 假设有n个人按顺序站在他的面前 ...

  2. [Codeforces712D] Memory and Scores(DP+前缀和优化)(不用单调队列)

    [Codeforces712D] Memory and Scores(DP+前缀和优化)(不用单调队列) 题面 两个人玩游戏,共进行t轮,每人每轮从[-k,k]中选出一个数字,将其加到自己的总分中.已 ...

  3. 并行开发 8.用VS性能向导解剖你的程序

    原文:8天玩转并行开发——第八天 用VS性能向导解剖你的程序 最后一篇,我们来说说vs的“性能向导",通常我们调试程序的性能一般会使用Stopwatch,如果希望更加系统的了解程序,我们就需 ...

  4. C#设计模式:原型模式(Prototype Pattern)

    一,原型模式:通过将一个原型对象传给那个要发动创建的对象,这个要发动创建的对象通过请求原型对象拷贝它们自己来实施创建.(包含深度克隆和浅克隆) 主要面对的问题是:“某些结构复杂的对象”的创建工作:由于 ...

  5. linux处理器子系统调优

  6. C语言获取当前时间

    #include <stdio.h> #include <time.h> void main () { time_t rawtime; struct tm * timeinfo ...

  7. CS184.1X 计算机图形学导论 HomeWork1

    最容易填写的函数就是left.输入为旋转的角度,当前的eye与up这两个三维向量 void Transform::left(float degrees, vec3& eye, vec3& ...

  8. elasticsearch相关聚合查询示例

    索引(index):logstash-nginx-*,type:nginx_access 请求路径: 1.按照某个字段进行分组统计访问量 { "query": { "bo ...

  9. hdu 4235 容斥原理模板题

    题目大意: 输入样例个数T,每个样例输入三个数a,b,n,求[a,b]之间与n互素的个数 基本思路: 互斥,想想这个:AUBUC=A+B+C-A∩B-A∩C-B∩C+A∩B∩C fac存的是n的素因数 ...

  10. 第一节 :Windows 平台安装 MongoDB

    MongoDB 下载 下载地址:https://www.mongodb.com/download-center#community 安装到C盘根目录下 创建数据目录 MongoDB将数据目录存储在 d ...