用函数递归的方法解决古印度汉诺塔hanoi问题
问题源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
我们把柱子依次命名为A,B,C
从只有一个圆盘考虑:直接就是A-->C
两个圆盘的时候就是:A-->B,A-->C,B-->C
三个圆盘的时候就是:A-->C,A-->B,C-->B,A-->C,B-->A,B-->C,A-->C
其中标红色的步骤就是将原有最底下的圆盘从A-->C,执行这个步骤前我们可以发现实际上是先将A最底下大盘上的所有圆盘(即n-1)都移到B上,接着执行A-->C,最后再将B上n-1个圆盘从B移到C上,不难发现要将n-1个圆盘从B移到C上,也就是要借助A,将n-2个圆盘从B移到A上,这样才能将B上最底下圆盘移到C上。
def _move(n, a, b, c):
if n == 1: # 只有一个圆盘时直接从A-->C
print('move:', a, '-->', c)
else:
_move(n - 1, a, c, b) # 现将n-1个圆盘从A-->B
_move(1, a, b, c) # 接着将原有A中最底下圆盘从A-->C
_move(n - 1, b, a, c) # 最后借助A,将B中n-1个圆盘从B-->C m = int(input('请输入hanoi塔个数:'))
print('移动的步骤如下:')
_move(m, 'A', 'B', 'C')
用函数递归的方法解决古印度汉诺塔hanoi问题的更多相关文章
- "递归"实现"约瑟夫环","汉诺塔"
一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开 ...
- 关于C语言解决汉诺塔(hanoi)问题
C语言解决汉诺塔问题 汉诺塔是典型的递归调用问题: hanoi简介:印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣 ...
- 汉诺塔算法的递归与非递归的C以及C++源代码
汉诺塔(又称河内塔)问题其实是印度的一个古老的传说. 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 个小, ...
- 汉诺塔算法c++源代码(递归与非递归)[转]
算法介绍: 其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n - 1(有兴趣的可以自己证明试试看).后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了.首先把三根柱 ...
- 【Python学习之七】递归——汉诺塔问题的算法理解
汉诺塔问题 汉诺塔的移动可以用递归函数非常简单地实现.请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的 ...
- [Python3 练习] 005 汉诺塔1 递归解法
题目:汉诺塔 I (1) 描述 传说,在世界中心贝拿勒斯(在印度北部)的圣庙外有左中右三根足够长的柱子(塔) 左边柱子上套着 64 片金片,金片按"上小下大"排,其余两根是空柱子 ...
- PTA 汉诺塔的非递归实现(C 语言)
借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c), 即将N个盘子从起始柱(标记为“a”)通过借助柱(标记为“b”)移动到目标柱(标记为“c”), 并保证每个移动符合汉诺塔问题的要求 ...
- hanoi(汉诺塔)递归实现
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序 ...
- JAVA递归算法及经典递归例子 对于这个汉诺塔问题
前言:递归(recursion):递归满足2个条件 1)有反复执行的过程(调用自身) 2)有跳出反复执行过程的条件(递归出口) 第一题:汉诺塔 对于这个汉诺塔问题,在写递归时,我们只需要确定两个条件: ...
随机推荐
- [poj3074]Sudoku(舞蹈链)
题目链接:http://poj.org/problem?id=3074 舞蹈链精确覆盖的经典题目,一个数独每个位置的要求,可以得到以下四个约束1.每个位置有且只有一个数字2.每个位置的数字在一行只能出 ...
- NGUI的sprite的使用(九宫切图)
一,图集的添加和背景图的选择 图集的选择Atlas和背景图的选择Sprite 二,type的sliced切背景图的使用 当选择Sprite后的edit时,我们就可以设置当前背景图的边距,也有切图的意思 ...
- 【问题解决方案】Mathtype中丢失Mplugin.dll的问题
网络上搜索到的答案: Mathtype中丢失Mplugin.dll,把Mplugin.dll文件放到Mathtype安装根目录下就好了. 然而试过以后仍然不行 事实是: 如果下载的mathtype安装 ...
- elasticsearch 基础 —— Query String
使用查询解析器来解析其内容的查询.下面是一个例子: GET /_search { "query": { "query_string" : { "def ...
- XMPP即时通讯协议使用(一)——Openfire安装
Openfire服务器安装 下载地址:https://www.igniterealtime.org/downloads/index.jsp,根据你的操作系统,选择对应的下载版本.本文选择的是openf ...
- 20180105-Python中dict的使用方法
字典是Python中常用的内置数据类型之一. 字典是无序的对象集合,只能通过key-value的方式存取数据,字典是一种映射类型,其次key的必须是可hash的不可变类型.字典中的key必须唯一. 1 ...
- Nexus搭建Maven私服中央仓库
一.概述 1.概要 现在的项目基本都是用Maven来管理工程,这样一来在公司内容搭建一个私服就非常有必要了,这样一来可以管理公司内部用的JAR包,也可以管理第三方的各种JAR来,以免每次都要从外网的仓 ...
- weblogic启动脚本
DATE=`date +%Y%m%d%H%M%S` user=`whoami` logDir=/app/logs/sguap_admin #启动日志存放路径sguap是例子系统简称# logDestd ...
- SYSAUX表空间满,
step1. 确认到底是哪个段占用了sysaux空间: select segment_name,sum(bytes)/1024/1024 from dba_segments where tables ...
- bzoj1488 [HNOI2009]图的同构 Burnside 引理
题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理 ...