Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

这道题让求数组中和最大的子数组的和,类似这种“问题的子问题的最优解”问题首先想到的是使用动态规划的方法求解,使用动态规划的难点在于使用适当的dp数组写出问题的正确的状态转移方程,本题的状态转移方程可以表示为:dp[i]=max(dp[i-1]+nums[i],nums[i]),其中dp[i]表示数组中以nums[i]结尾的和最大的子数组的和。这个解法的时间复杂度是 O(n),内存消耗O(n)。代码如下maxSubArray_dp_normal函数所示。由于在计算dp[i]的时候只需要用到dp[i-1],所有可以用一个变量代替dp数组,进行了空间压缩,实现时间复杂度是 O(n),内存消耗O(1),是本题的最优解法,代码如maxSubArray_dp_selected函数所示。

动态规划:


//动态规划 时间O(n) 空间O(n)
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        //return maxSubArray_dp_normal(nums);
        return maxSubArray_dp_seleted(nums);  
    }
    int maxSubArray_dp_normal(vector<int>& nums)
    {
        const int nums_size = nums.size();
        vector<int> dp = nums;//dp[i]表示以nums[i]结尾的和最大的子序列的和
        int res = dp[0];
        for(int i = 1;i<nums_size;++i)
        {
            dp[i] = max(dp[i-1]+nums[i],nums[i]);//状态转移方程 
            res = max(res,dp[i]);
        }
        return res;
    }
    //空间优化了的dp,时间O(n) 空间O(1)
    int maxSubArray_dp_seleted(vector<int> &nums)
    {
        const int nums_size = nums.size();
        int dp = nums[0];
        int res = dp;
        for(int i = 1;i<nums_size;++i)
        {
            dp = max(dp+nums[i],nums[i]);//状态转移方程 
            res = max(res,dp);
        }
        return res;
    } 
};

题目还要求我们用分治法 Divide and Conquer Approach 来解,这个分治法的思想就类似于二分搜索法,需要把数组一分为二,分别找出左边和右边的最大子数组之和,然后还要考虑最大和子数组同时跨越左右两个子数组的情况,具体是从中间开始向左右分别扫描,求出的最大值分别和左右两边得出的最大值相比较取三者最大的那一个,时间复杂度是O(nlogn),显然此种方法不是本题的最优解,分治法代码如下:

分治:


class Solution {
public:
    int maxSubArray(std::vector<int>& nums) {
        int nums_size = nums.size();
        return maxSubArray_div(nums,0,nums_size-1);
    }
    int maxSubArray_div(std::vector<int>& nums,int i,int j)
    {
        if(i>=j) return nums[i];
        int h = (j+i)/2;//也可以使用移位操作
        int left =  maxSubArray_div(nums,i,h);
        int right = maxSubArray_div(nums,h+1,j);
        int mid_value_right = nums[h];
        int r_sum = 0;
        for(int r = h;r<=j;++r)
        {
           r_sum+=nums[r];
           if(r_sum>=mid_value_right) mid_value_right=r_sum;
        }
        int mid_value_left = nums[h];
        int l_sum = 0;
        for(int l = h;l>=i;--l)
        {
            l_sum+=nums[l];
            if(l_sum>=mid_value_left) mid_value_left=l_sum;
        }
        int mid_value = mid_value_left + mid_value_right - nums[h];
        return max(max(left,right),mid_value);
    }  
};
 

[LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治的更多相关文章

  1. [LeetCode] 53. Maximum Subarray 最大子数组

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  2. [leetcode]53. Maximum Subarray最大子数组和

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  3. LeetCode 53. Maximum Subarray最大子序和 (C++)

    题目: Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  4. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  5. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  6. Leetcode#53.Maximum Subarray(最大子序和)

    题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...

  7. leetcode 53. Maximum Subarray 、152. Maximum Product Subarray

    53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...

  8. 41. leetcode 53. Maximum Subarray

    53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...

  9. LN : leetcode 53 Maximum Subarray

    lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...

随机推荐

  1. mysqlbinlog读懂binlog

    binlog 报unknown variable 'default-character-set=utf8' 方法1: 在/etc/my.cnf 中将default-character-set=utf8 ...

  2. C# out 和 ref 区别

    C#里面的 out 和ref参数时常会用到 记录一下: public void Start() { //outSum没必要赋值,赋值了也完全没用. //如果AddByOut函数内部直接使用out对应的 ...

  3. 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第5节 String类_3_字符串的常量池

    字符换是可以共享使用的,那么怎么去共享使用呢 三种方式去创建字符串.然后三种分别进行比较 3的地址和1.2的地址不一样 在堆里面有一块空间叫做字符串常量池,从jdk1.7开始.字符串常量池在堆中 字符 ...

  4. JsonDatetime

    ToDatetime public DateTime JsonDateTimeConvert(string time) { //try //{ if (String.IsNullOrEmpty(tim ...

  5. 关于存储过程的一些sql

    1.关于事务的回滚Set XACT_ABORT ON; 开启为on时 ,如果事务语句产生运行错误 ,将整个事务终止进行回滚,Off时只回滚产生错误的语句. 2.获取事务语句中上一次插入值的行号@@ID ...

  6. [Python3 填坑] 012 字典的遍历在 Python2 与 Python3 中区别

    目录 1. print( 坑的信息 ) 2. 开始填坑 2.1 Python2 中字典的遍历 2.2 Python3 中字典的遍历 2.3 结论 1. print( 坑的信息 ) 挖坑时间:2019/ ...

  7. [19/05/15-星期三] HTML_body标签(超链接标签和锚点)

    一.超链接标签 <html> <head> <meta charset="UTF-8"> <title>04 body超链接标签学习 ...

  8. 【洛谷p1970】花匠

    莫得致敬lz谢谢.lz的题解是优秀的题解谢谢! 看算法标签 但是我并不会DP的思路,用一个很神奇的码量超级少的代码(虽然我码了超多),然后其实这个数据可以看做是一个函数嘛对吧:(比如说样例) 那么要注 ...

  9. Kosaraju算法 有向图的强连通分量

    有向图的强连通分量即,在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  10. ES6判断当前页面是否微信浏览器中打开

    1.使用jq判断是否用微信浏览器打开页面 var is_weixin = (function(){return navigator.userAgent.toLowerCase().indexOf('m ...