Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

这道题让求数组中和最大的子数组的和,类似这种“问题的子问题的最优解”问题首先想到的是使用动态规划的方法求解,使用动态规划的难点在于使用适当的dp数组写出问题的正确的状态转移方程,本题的状态转移方程可以表示为:dp[i]=max(dp[i-1]+nums[i],nums[i]),其中dp[i]表示数组中以nums[i]结尾的和最大的子数组的和。这个解法的时间复杂度是 O(n),内存消耗O(n)。代码如下maxSubArray_dp_normal函数所示。由于在计算dp[i]的时候只需要用到dp[i-1],所有可以用一个变量代替dp数组,进行了空间压缩,实现时间复杂度是 O(n),内存消耗O(1),是本题的最优解法,代码如maxSubArray_dp_selected函数所示。

动态规划:


//动态规划 时间O(n) 空间O(n)
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        //return maxSubArray_dp_normal(nums);
        return maxSubArray_dp_seleted(nums);  
    }
    int maxSubArray_dp_normal(vector<int>& nums)
    {
        const int nums_size = nums.size();
        vector<int> dp = nums;//dp[i]表示以nums[i]结尾的和最大的子序列的和
        int res = dp[0];
        for(int i = 1;i<nums_size;++i)
        {
            dp[i] = max(dp[i-1]+nums[i],nums[i]);//状态转移方程 
            res = max(res,dp[i]);
        }
        return res;
    }
    //空间优化了的dp,时间O(n) 空间O(1)
    int maxSubArray_dp_seleted(vector<int> &nums)
    {
        const int nums_size = nums.size();
        int dp = nums[0];
        int res = dp;
        for(int i = 1;i<nums_size;++i)
        {
            dp = max(dp+nums[i],nums[i]);//状态转移方程 
            res = max(res,dp);
        }
        return res;
    } 
};

题目还要求我们用分治法 Divide and Conquer Approach 来解,这个分治法的思想就类似于二分搜索法,需要把数组一分为二,分别找出左边和右边的最大子数组之和,然后还要考虑最大和子数组同时跨越左右两个子数组的情况,具体是从中间开始向左右分别扫描,求出的最大值分别和左右两边得出的最大值相比较取三者最大的那一个,时间复杂度是O(nlogn),显然此种方法不是本题的最优解,分治法代码如下:

分治:


class Solution {
public:
    int maxSubArray(std::vector<int>& nums) {
        int nums_size = nums.size();
        return maxSubArray_div(nums,0,nums_size-1);
    }
    int maxSubArray_div(std::vector<int>& nums,int i,int j)
    {
        if(i>=j) return nums[i];
        int h = (j+i)/2;//也可以使用移位操作
        int left =  maxSubArray_div(nums,i,h);
        int right = maxSubArray_div(nums,h+1,j);
        int mid_value_right = nums[h];
        int r_sum = 0;
        for(int r = h;r<=j;++r)
        {
           r_sum+=nums[r];
           if(r_sum>=mid_value_right) mid_value_right=r_sum;
        }
        int mid_value_left = nums[h];
        int l_sum = 0;
        for(int l = h;l>=i;--l)
        {
            l_sum+=nums[l];
            if(l_sum>=mid_value_left) mid_value_left=l_sum;
        }
        int mid_value = mid_value_left + mid_value_right - nums[h];
        return max(max(left,right),mid_value);
    }  
};
 

[LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治的更多相关文章

  1. [LeetCode] 53. Maximum Subarray 最大子数组

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  2. [leetcode]53. Maximum Subarray最大子数组和

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  3. LeetCode 53. Maximum Subarray最大子序和 (C++)

    题目: Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  4. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  5. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  6. Leetcode#53.Maximum Subarray(最大子序和)

    题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...

  7. leetcode 53. Maximum Subarray 、152. Maximum Product Subarray

    53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...

  8. 41. leetcode 53. Maximum Subarray

    53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...

  9. LN : leetcode 53 Maximum Subarray

    lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...

随机推荐

  1. Rhybox播放mp3, smplayer如何播放flv等等

    [[ 支持mp3,在终端: sudo apt-get install gstreamer0.10-*plugins-ugly 支持wma,在终端: sudo apt-get install gstre ...

  2. pve-备份

    一个50g的磁盘,用了13分钟 INFO: starting new backup job: vzdump 111 --node cu-pve04 --mode snapshot --compress ...

  3. KVM 虚拟化架构和实现原理

    目录 目录 KVM虚拟化架构 devkvm QEMU OpenstackKVMQEMU 的关系 KVM的虚拟化实现 KVM虚拟化架构 KVM是嵌入在Linux操作系统标准内核中的一个虚拟化模块,它能够 ...

  4. 阶段1 语言基础+高级_1-3-Java语言高级_04-集合_08 Map集合_7_HashMap存储自定义类型键值

    自定义类型做key值.必须要重写hashCode和equals方法 创建pserson类 有name个age两个成员变量.重写toString方法 key有重复,会被新的value值替换掉. key值 ...

  5. Hand on Machine Learning 第二章:端到端的机器学习

    1.import 模块 import os import tarfile from six.moves import urllib import pandas as pd pd.set_option( ...

  6. 002/Node.js(Mooc)--Http知识

    1.什么是Http 菜鸟教程:http://www.runoob.com/http/http-tutorial.html 视频地址:https://www.imooc.com/video/6713 h ...

  7. == 和 equals的区别

    == 和 equals的区别   基本类型:== 比较的是两个变量的面值大小 对象对象: 比较的是内存地址  特例: String a = "abc" String b = &qu ...

  8. java项目中,针对缓存问题的处理方式【接口中的处理方式】

    1.在service包中,分别建立了关于缓存的一系列的接口.类等,封装到一个工具包中: 临时缓存的接口(代码部分): package com.tools; import java.util.Date; ...

  9. 剑指Offer编程题(Java实现)——二维数组中的查找

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

  10. String.indexOf()的使用方法

    String.indexOf()的用途: 返回此字符串中第一个出现的指定的子字符串,如果没有找到则返回-1 源码如下: /** * Returns the index within this stri ...