keras训练大量数据的办法
最近在做一个鉴黄的项目,数据量比较大,有几百个G,一次性加入内存再去训练模青型是不现实的。
查阅资料发现keras中可以用两种方法解决,一是将数据转为tfrecord,但转换后数据大小会方法不好;另外一种就是利用generator,先一次加入所有数据的路径,然后每个batch的读入
# 读取图片函数
def get_im_cv2(paths, img_rows, img_cols, color_type=1, normalize=True):
'''
参数:
paths:要读取的图片路径列表
img_rows:图片行
img_cols:图片列
color_type:图片颜色通道
返回:
imgs: 图片数组
'''
# Load as grayscale
imgs = []
for path in paths:
if color_type == 1:
img = cv2.imread(path, 0)
elif color_type == 3:
img = cv2.imread(path)
# Reduce size
resized = cv2.resize(img, (img_cols, img_rows))
if normalize:
resized = resized.astype('float32')
resized /= 127.5
resized -= 1. imgs.append(resized) return np.array(imgs).reshape(len(paths), img_rows, img_cols, color_type)
def get_train_batch(X_train, y_train, batch_size, img_w, img_h, color_type, is_argumentation):
'''
参数:
X_train:所有图片路径列表
y_train: 所有图片对应的标签列表
batch_size:批次
img_w:图片宽
img_h:图片高
color_type:图片类型
is_argumentation:是否需要数据增强
返回:
一个generator,x: 获取的批次图片 y: 获取的图片对应的标签
'''
while 1:
for i in range(0, len(X_train), batch_size):
x = get_im_cv2(X_train[i:i+batch_size], img_w, img_h, color_type)
y = y_train[i:i+batch_size]
if is_argumentation:
# 数据增强
x, y = img_augmentation(x, y)
# 最重要的就是这个yield,它代表返回,返回以后循环还是会继续,然后再返回。就比如有一个机器一直在作累加运算,但是会把每次累加中间结果告诉你一样,直到把所有数加完
yield(np.array(x}, np.array(y))
result = model.fit_generator(generator=get_train_batch(X_train, y_train, train_batch_size, img_w, img_h, color_type, True),
steps_per_epoch=1351,
epochs=50, verbose=1,
validation_data=get_train_batch(X_valid, y_valid, valid_batch_size,img_w, img_h, color_type, False),
validation_steps=52,
callbacks=[ckpt, early_stop],
max_queue_size=capacity,
workers=1)
参考:https://www.jianshu.com/p/5bdae9dcfc9c
https://keras.io/zh/models/model/
keras训练大量数据的办法的更多相关文章
- Keras 训练 inceptionV3 并移植到OpenCV4.0 in C++
1. 训练 # --coding:utf--- import os import sys import glob import argparse import matplotlib.pyplot as ...
- keras训练实例-python实现
用keras训练模型并实时显示loss/acc曲线,(重要的事情说三遍:实时!实时!实时!)实时导出loss/acc数值(导出的方法就是实时把loss/acc等写到一个文本文件中,其他模块如前端调用时 ...
- keras训练cnn模型时loss为nan
keras训练cnn模型时loss为nan 1.首先记下来如何解决这个问题的:由于我代码中 model.compile(loss='categorical_crossentropy', optimiz ...
- scipy笔记—scipy.misc.imresize用法(方便训练图像数据)
scipy.misc.imresize 不同于普通的reshape, imresize不是单纯的改变图像矩阵的维度,而是能将图片重采样为指定像素,这样给深度学习中训练图像数据带来方便. import ...
- Solr4.6删除数据的办法
Solr4.6的管理界面上,假设不配置数据导入的功能,将看不到清除数据的button.我表示非常遗憾,正好我们线上没有配置数据导入的功能. 网上搜到的各种清理solr数据的HTTP请求,拿到我的sol ...
- Solr4.3---4.6删除数据的办法
Solr4.6的管理界面上,如果不配置数据导入的功能,将看不到清除数据的按钮.我表示很遗憾,正好我们线上没有配置数据导入的功能. 网上搜到的各种清理solr数据的HTTP请求,拿到我的solr4.6上 ...
- 百度DMLC分布式深度机器学习开源项目(简称“深盟”)上线了如xgboost(速度快效果好的Boosting模型)、CXXNET(极致的C++深度学习库)、Minerva(高效灵活的并行深度学习引擎)以及Parameter Server(一小时训练600T数据)等产品,在语音识别、OCR识别、人脸识别以及计算效率提升上发布了多个成熟产品。
百度为何开源深度机器学习平台? 有一系列领先优势的百度却选择开源其深度机器学习平台,为何交底自己的核心技术?深思之下,却是在面对业界无奈时的远见之举. 5月20日,百度在github上开源了其 ...
- keras训练函数fit和fit_generator对比,图像生成器ImageDataGenerator数据增强
1. [深度学习] Keras 如何使用fit和fit_generator https://blog.csdn.net/zwqjoy/article/details/88356094 ps:解决样本数 ...
- 使用Keras训练大规模数据集
官方提供的.flow_from_directory(directory)函数可以读取并训练大规模训练数据,基本可以满足大部分需求.但是在有些场合下,需要自己读取大规模数据以及对应标签,下面提供一种方法 ...
随机推荐
- linux网络管理命令"ip"用法
Linux的ip命令和ifconfig类似,但前者功能更强大,并旨在取代后者.使用ip命令,只需一个命令,你就能很轻松地执行一些网络管理任务. ip help命令: 显示ip相关命令的帮助: # i ...
- Bloomber 新建基金账户步骤
--Bloomber 新建基金账户步骤0.执行FIRM命令1.新建account group2.新建account3.将account加入到account group4.将account group授 ...
- js高程之作用域
我们知道js执行环境有全局环境(window)和局部环境(一般指函数环境)之分. ; function calc(){ ; } 上述代码,虽然有两个num变量,但是他们所在的执行环境却是不同的,第一个 ...
- 安装VMTool
一. 安装VMTool 开启虚拟机,然后在VMware上选虚拟机->安装VMTool 如果提示光驱被占用就先用root登录 在命令行中挂载光盘 #mount /dev/cdrom ...
- 怎样将DataGrip连接到MS SQL Server?
DataGrip支持几乎所有主流的关系数据库产品,如DB2.Derby.H2.MySQL.Oracle.PostgreSQL.SQL Server.Sqllite及Sybase等,并且提供了简单易用的 ...
- Appium,AirTest切换使用时,appium罢工之坑(1)
由于一些元素不能定位,所以最近项目引用了Airtest 问题场景: case的开始使用appium,case执行过程中,切换到airtest操作元素,待执行完airtest相关步骤之后,后续使用app ...
- pt-online-schema-change 修改表结构
- 【CUDA开发】__syncthreads的理解
__syncthreads()是cuda的内建函数,用于块内线程通信. __syncthreads() is you garden variety thread barrier. Any thread ...
- SpringBoot自动化配置之四:@Conditional注解详解
前言 之前在分析spring boot 源码时导出可见@ConditionalOnBean 之类的注解,那么它到底是如何使用的以及其工作流程如何,我们这里就围绕以下几点来分析: @Conditiona ...
- Configure脚本支持说明
在Linux上安装Nginx需要执行Configure脚本,该脚本需要做一些参数说明: 选项 说明 --prefix=<path> 指定Nginx软件的安装路径,若不指定默认安装在/usr ...