[论文理解] Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
简介
SENet提出了一种更好的特征表示结构,通过支路结构学习作用到input上更好的表示feature。结构上是使用一个支路去学习如何评估通道间的关联,然后作用到原feature map上去,实现对输入的校准。支路的帮助学习到的是神经网络更加适合的表示。为了使网络通过全局信息来衡量通道关联,结构上使用了global pooling捕获全局信息,然后连接两个全连接层,作用到输入上去,即完成了对输入的重校准,可以使网络学习到更好的表示。
SQUEEZE-AND-EXCITATION BLOCKS
一个block的结构大致如下:
上图中Fsq是Squeeze过程,Fex是Excitation过程,然后通过Fscale将学习到的权重作用在输入上。
Squeeze: Global Information Embedding
作者将Squeeze过程称为global information embedding的过程,因为squeeze的过程实际上是对feature map利用global pooling来整合全局特征。
Excitation: Adaptive Recalibration
作者将Excitation过程称为重校准过程,因为此过程通过支路学习到的权重,作用到原输入上去,要实现对每个通道进行打分,即网络学习到通道score,则必须要学习到非线性结果,所以作者采用fc-relu-fc-sigmoid的excitation结构来实现score映射。
根据作者论文中的举例,可以清楚看到以Inception为例的Squeeze和Excitation过程:
而Fscale过程就是对应相乘,把每个通道的权重对应乘上input的对应通道feature。
这个论文比较好理解。
简单写了一个block:
import torch
import torch.nn as nn
class SEModule(nn.Module):
def __init__(self,r = 3):
super(SEModule,self).__init__()
self.global_pooling = nn.MaxPool2d(128)
self.fc1 = nn.Linear(64,64//r)
self.relu1 = nn.ReLU(64//r)
self.fc2 = nn.Linear(64//r,64)
self.sigmoid = nn.Sigmoid()
def forward(self,x):
se_x = self.global_pooling(x)
se_x = self.fc1(se_x.view(-1,64))
se_x = self.relu1(se_x)
se_x = self.fc2(se_x)
se_x = self.sigmoid(se_x).view(-1,64,1,1)
return x * se_x
if __name__ =="__main__":
from torchsummary import summary
model = SEModule()
summary(model,(64,128,128),device = "cpu")
'''
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
MaxPool2d-1 [-1, 64, 1, 1] 0
Linear-2 [-1, 21] 1,365
ReLU-3 [-1, 21] 0
Linear-4 [-1, 64] 1,408
Sigmoid-5 [-1, 64] 0
================================================================
Total params: 2,773
Trainable params: 2,773
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 4.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.01
Estimated Total Size (MB): 4.01
----------------------------------------------------------------
'''
论文原文:https://arxiv.org/pdf/1709.01507.pdf
[论文理解] Squeeze-and-Excitation Networks的更多相关文章
- [论文理解] Learning Efficient Convolutional Networks through Network Slimming
Learning Efficient Convolutional Networks through Network Slimming 简介 这是我看的第一篇模型压缩方面的论文,应该也算比较出名的一篇吧 ...
- 图像处理论文详解 | Deformable Convolutional Networks | CVPR | 2017
文章转自同一作者的微信公众号:[机器学习炼丹术] 论文名称:"Deformable Convolutional Networks" 论文链接:https://arxiv.org/a ...
- 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning
论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning 2017-06-06 21: ...
- [论文理解]关于ResNet的进一步理解
[论文理解]关于ResNet的理解 这两天回忆起resnet,感觉残差结构还是不怎么理解(可能当时理解了,时间长了忘了吧),重新梳理一下两点,关于resnet结构的思考. 要解决什么问题 论文的一大贡 ...
- [论文理解] CornerNet: Detecting Objects as Paired Keypoints
[论文理解] CornerNet: Detecting Objects as Paired Keypoints 简介 首先这是一篇anchor free的文章,看了之后觉得方法挺好的,预测左上角和右下 ...
- [论文理解] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 简介 Faster R-CNN是很经典的t ...
- [论文理解]Region-Based Convolutional Networks for Accurate Object Detection and Segmentation
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation 概括 这是一篇2016年的目标检测 ...
- [论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Intro MobileNet 我 ...
- [论文理解] Spatial Transformer Networks
Spatial Transformer Networks 简介 本文提出了能够学习feature仿射变换的一种结构,并且该结构不需要给其他额外的监督信息,网络自己就能学习到对预测结果有用的仿射变换.因 ...
随机推荐
- Jade学习(四)之结合node如何编译执行
1.首先安装node 2.新建一个文件夹并进入该文件夹 3.安装jade 4.在新建的文件夹下新建js文件,写nodejs代码 5.在vscode中利用插件code runner直接执行js文件,输出 ...
- sqlserver2008 必知必会技巧-- 快速索引对象
对象资源管理器里面 -- 数据库 -- 表目录 ,然后按 f7 弹出 对象资源管理详细信息 , 里面有搜索栏 , 可以 使用 % 进行模糊查询 例如我们查包含 student的表 %student% ...
- BFC的概念、BFC触发方式、BFC作用介绍
一.BFC的概念 GFC——block fomatting context(中文译为块级格式化上下文) 二. 如何触发BFC 1. 设置 float 除 none 以外的值(left.right) 2 ...
- 经典Spring入门基础教程详解
经典Spring入门基础教程详解 https://pan.baidu.com/s/1c016cI#list/path=%2Fsharelink2319398594-201713320584085%2F ...
- HashMap的相关面试题
HashMap的工作原理是近年来常见的Java面试题.几乎每个Java程序员都知道HashMap,都知道哪里要用HashMap,知道Hashtable和HashMap之间的区别,那么为何这道面试题如此 ...
- python语音提示
#coding:utf8 import win32com.client speaker = win32com.client.Dispatch("SAPI.SpVoice") whi ...
- tomcat+Redis
Tomcat是Apache软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun和其他一些公司及个人共同开发而成. Tomca ...
- poj1419 Graph Coloring 最大独立集(最大团)
最大独立集: 顶点集V中取 K个顶点,其两两间无连接. 最大团: 顶点集V中取 K个顶点,其两两间有边连接. 最大独立集=补图的最大团最大团=补图的最大独立集 #include<iostream ...
- zlib的压缩与解压
http://zlibnet.codeplex.com/releases/view/629717 using ZLibNet; string str = "ccc"; byte [ ...
- 【gin-vue-admin】 使用go和vue 快速搭建一个项目模板
gin-vue-admin gin+vue开源快速项目模板 项目地址:https://github.com/piexlmax/gin-vue-admin 增加了 micro-service-test分 ...