A

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-10;
const double EPS = 1.0e-4;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll Mod = ;
int num[];
int pre[];
int n;
int number;
bool check()
{
for (int i = ; i <= n; i++)
{
pre[i] = pre[i - ] + pre[i];
if (pre[i] < )
{
return false;
}
}
return true;
}
int main()
{
int T;
cin >> T;
while (T--)
{
cin >> n >> number;
for (int i = ; i <= number; i++)
{
cin >> num[i];
}
for (int i = ; i <= ; i++)
{
for (int j = ; j <= n; j++)
{
pre[j] = ;
}
for (int j = ; j <= number; j++)
{
if (i == )
{
pre[num[j]] += ;
pre[num[j] + ] += -;
}
else
{
pre[max(, num[j] - i + )] += ;
pre[num[j] + i] += -;
}
}
if (check())
{
cout << i << endl;
break;
}
}
}
return ;
}

B

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-8;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int maxm = ;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll mod = 3e7;
int le[];
int re[];
int wait[];
int main()
{
int t;
cin >> t;
while (t--)
{
int n;
scanf("%d", &n);
for (int i = ; i < n; i++)
{
scanf("%d %d", &le[i], &re[i]);
}
int cur = le[];
for (int i = ; i < n; i++)
{
cur = max(cur, le[i]);
if (re[i] >= cur)
{
wait[i] = cur;
cur++;
}
else
{
wait[i] = ;
}
}
for (int i = ; i < n; i++)
{
cout << wait[i];
if (i != n - )
{
cout << " ";
}
}
cout << endl;
}
return ;
}

C

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-10;
const double EPS = 1.0e-4;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll Mod = ;
int num[];
int pre[];
char f[];
int main()
{
int n;
cin >> n;
for (int i = ; i <= n; i++)
{
scanf("%d", num + i);
}
scanf("%s", f + );
for (int i = ; i < n; i++)
{
if (f[i] == '')
{
pre[i] = pre[i - ] + ;
}
else
{
pre[i] = ;
}
}
for (int i = ; i < n; i++)
{
if (pre[i] > pre[i + ])
{
sort(num + i - pre[i] + , num + i + );
}
}
for (int i = ; i < n; i++)
{
if (num[i] != i)
{
cout << "NO" << endl;
return ;
}
}
cout << "YES" << endl;
return ;
}

E

把所有点放在一个set里,每次取set中一个顶点,删去,遍历set,删去与此顶点邻接的顶点

因为遍历的过程中有两种结局1.删去某个结点 遍历成功 2.两点之间不存在边 遍历失败

所以遍历的总复杂度为O(n+m) 再加上set的复杂度就是 O((n+m)log)

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-10;
const double EPS = 1.0e-4;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll Mod = ;
set<int> need;
map<int, bool> mp[];
vector<int> ans;
int main()
{
int n, m;
int from, to;
cin >> n;
for (int i = ; i <= n; i++)
{
need.insert(i);
}
cin >> m;
for (int i = ; i <= m; i++)
{
scanf("%d %d", &from, &to);
mp[from][to] = mp[to][from] = ;
}
while (!need.empty())
{
int todo = *need.begin();
need.erase(todo);
queue<int> que;
ans.push_back();
que.push(todo);
while (!que.empty())
{
queue<int> shan;
int cnt = que.front();
que.pop();
ans.back()++;
for (auto i : need)
{
if (!mp[cnt][i])
{
que.push(i);
shan.push(i);
}
}
while (!shan.empty())
{
need.erase(shan.front());
shan.pop();
}
}
}
cout << ans.size() << endl;
sort(ans.begin(), ans.end());
for (auto i : ans)
{
cout << i << " ";
}
cout << endl;
return ;
}

F

如果知道到N的因数(N%i==0)数量级是N^(1/3)的这道题就很好做了 因为当N=1或者N=2时因数数目等于N 而1e6=2^20 每个数最多被修改7次

所以线段树维护一个最大值 一个sum值 当最大值不大于2时不用修改 大于二时递归下去暴力修改

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que; get min
const double eps = 1.0e-10;
const double EPS = 1.0e-4;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
//const int maxn = 3e5 + 10;
const int turn[][] = {{, }, { -, }, {, }, {, -}};
//priority_queue<int, vector<int>, less<int>> que;
//next_permutation
ll Mod = ;
ll n, q;
int l, r;
ll dp[];
struct node
{
ll maxn, sum;
} tree[];
void pushup(int x)
{
tree[x].sum = tree[x << ].sum + tree[x << | ].sum;
tree[x].maxn = max(tree[x << ].maxn, tree[x << | ].maxn);
}
void build(int x, ll value, int root = , int l = , int r = n)
{
if (l > x || r < x)
{
return ;
}
if (l == x && r == x)
{
tree[root].sum = tree[root].maxn = value;
return;
}
int mid = (l + r) >> ;
if (x <= mid)
{
build(x, value, root << , l, mid);
}
else
{
build(x, value, root << | , mid + , r);
}
pushup(root);
}
void update(int xl, int xr, int root = , int l = , int r = n)
{
if (l > r || l > xr || r < xl)
{
return;
}
if (xl <= l && xr >= r && tree[root].maxn <= )
{
return;
}
if (l == r)
{
tree[root].sum = tree[root].maxn = dp[tree[root].sum];
return ;
}
int mid = (l + r) >> ;
if (xl <= mid)
{
update(xl, xr, root << , l, mid);
}
if (xr > mid)
{
update(xl, xr, root << | , mid + , r);
}
pushup(root);
}
ll getsum(int xl, int xr, int root = , int l = , int r = n)
{
if (l > r || l > xr || r < xl)
{
return ;
}
if (xl <= l && xr >= r)
{
return tree[root].sum;
}
int mid = (l + r) >> ;
return getsum(xl, xr, root << , l, mid) + getsum(xl, xr, root << | , mid + , r);
}
int main()
{
cin >> n >> q;
ll cnt;
for (int i = ; i <= ; i++)
{
for (int j = i; j <= ; j += i)
{
dp[j]++;
}
}
for (int i = ; i <= n; i++)
{
scanf("%lld", &cnt);
build(i, cnt);
}
for (int i = ; i <= q; i++)
{
int now;
ll value;
int aim;
cin >> now;
if (now == )
{
scanf("%d %d", &l, &r);
update(l, r);
}
else
{
scanf("%d %d", &l, &r);
cout << getsum(l, r) << endl;
}
}
return ;
}

Codeforces 920 反图联通块 线段树质因数暴力的更多相关文章

  1. Codeforces 920 E Connected Components?

    Discription You are given an undirected graph consisting of n vertices and  edges. Instead of giving ...

  2. Educational Codeforces Round 5 - C. The Labyrinth (dfs联通块操作)

    题目链接:http://codeforces.com/contest/616/problem/C 题意就是 给你一个n行m列的图,让你求’*‘这个元素上下左右相连的连续的’.‘有多少(本身也算一个), ...

  3. Codeforces 731C. Socks 联通块

    C. Socks time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input o ...

  4. Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量

    D. Directed Roads   ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...

  5. PAT A1013 Battle Over Cities (25 分)——图遍历,联通块个数

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...

  6. IndiaHacks 2016 - Online Edition (Div. 1 + Div. 2) E. Bear and Forgotten Tree 2 bfs set 反图的生成树

    E. Bear and Forgotten Tree 2 题目连接: http://www.codeforces.com/contest/653/problem/E Description A tre ...

  7. 【UVA10765】Doves and bombs (BCC求割点后联通块数量)

    题目: 题意: 给了一个联通无向图,现在问去掉某个点,会让图变成几个联通块? 输出的按分出的从多到小,若相等,输出标号从小到大.输出M个. 分析: BCC求割点后联通块数量,Tarjan算法. 联通块 ...

  8. 链表加bfs求补图联通块

    https://oj.neu.edu.cn/problem/1387 给一个点数N <= 100000, 边 <= 1000000的无向图,求补图的联通块数,以及每个块包含的点数 由于点数 ...

  9. bzoj2200拓扑排序+最短路+联通块

    自己写的不知道哪里wa了,明明和网上的代码差不多.,. /* 给定一张图,有的边是无向边,有的是有向边,有向边不会出现在环中,且有可能是负权值 现在给定起点s,求出s到其余所有点的最短路长度 任何存在 ...

随机推荐

  1. tomcat+nginx负载均衡

    一.       工具 nginx-1.8.0 apache-tomcat-6.0.33 二.    目标 实现高性能负载均衡的Tomcat集群: 三.    步骤 1.首先下载Nginx,要下载稳定 ...

  2. vmware fusion 找不到可以连接的有效对等进程

    红框会有什么提示 vmware...,你点击允许

  3. 基于球分割的空间二叉树检索算法(sphere-kdtree)

    sphere-kdtree算法思路说明 具体思路如下: 第一.球半径分割,即利用不同的球半径,将三维空间点(向量)分割成多块.所以首先要求确定的就是分割多少块,怎么设置半径最合理. 第二.三维空间点平 ...

  4. STL标准库-容器-set与map

    STL标准库-容器-set与multiset C++的set https://www.cnblogs.com/LearningTheLoad/p/7456024.html STL标准库-容器-map和 ...

  5. 初步理解JS的事件机制

    一.事件流(捕获,冒泡)   事件流:指从页面中接收事件的顺序,有冒泡流和捕获流. 当页面中发生某种事件(比如鼠标点击,鼠标滑过等)时,毫无疑问子元素和父元素都会接收到该事件,可具体顺序是怎样的呢?冒 ...

  6. Dataframe的索引问题

    1 两个Dataframe相加时,一定要注意索引是否对应再相加,利用这个特点有时可以先用set_index()将某些列置为索引列,再进行相加. import pandas as pd df1 = pd ...

  7. 【笔记】云主机当跳板,ssh tunnel远程登录树莓派

    问题 想要在外网登录家中局域网的树莓派,家里的网络外网ip的会变,而且不适合对公网暴露端口.调研了一番,发现可以使用云主机当跳板,结合ssh隧道实现远程登录到局域网中的树莓派 关于ssh隧道的原理可以 ...

  8. appium常见问题01_android筛选下拉框无法定位问题

    近期用appium做android自动化的过程中,遇到一种筛选下拉框,神奇的是,定位工具定位怎样都定位不到. 首先尝试用uiaotomator工具定位,无法定位到下拉框元素,只能定位到底层元素: 询问 ...

  9. 【ABAP系列】SAP ABAP 取两个内表的交集 比较两个内表的不同

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP 取两个内表的交 ...

  10. Scratch少儿编程系列:(八)演奏简单音乐

    一.程序说明 本程序,用来演奏简单音乐. 二.制作过程 1. 场景和角色的选择 场景选择“音乐和舞蹈”主题下的“party root”,角色沿用默认角色,如下图: 选择后效果如下图: 2. 切换到“脚 ...