Naive Bayes Algorithm And Laplace Smoothing
朴素贝叶斯算法(Naive Bayes)适用于在Training Set中,输入X和输出Y都是离散型的情况。如果输入X为连续,输出Y为离散,我们考虑使用逻辑回归(Logistic Regression)或者GDA(Gaussian Discriminant Algorithm)。
试想,当我们拿到一个全新的输入X,求解输出Y的分类问题时,相当于,我们要求解概率p(Y|X)这里的X和Y都是向量,我们要根据p(Y|X)的结果,找出可能性最大的那个y值,进行输出。举个经典的垃圾邮件(Spam)分类例子:如果在邮件中出现了"buy","discount","now",但没有出现"sale","price",试问这份邮件是垃圾邮件吗?首先我们将这5个单词分别对应到X中(顺序分别为"buy","discount","now","sale","price"):

然后,我们要计算出p(y=1|x)和p(y=0|x),以决定邮件是否为垃圾邮件。在实际情况中,X的维度可能是数万,甚至更多,直接求解的可能性为0,所以需要用到Naive Bayes。我们知道贝叶斯定理:

运用到此例子上,可以写为:

而Naive Bayes的Naive就在于,在给定y的情况下,我们认为X各个维度之间相互独立,即:
所以有:

由全概率公式:

也就是说,我们预先通过建模,知道在一般情况下垃圾邮件的概率,以及垃圾邮件和非垃圾邮件中中,包含某一个词的概率,然后即可利用此公式进行计算。拓展到一般的情况:

拉普拉斯平滑,当在我们碰到没见过的xi,会导致上式的分子和分母都为0,则p(y=1|x)及p(y=0|x)的值无法得出,为了解决此问题,引入拉普拉斯平滑。下面先举例来说明:假设邮件分类中,有2个类,在指定的训练样本中,某个词语K1,观测计数分别为990,10,K1的概率为0.99,0.01,对这两个量使用拉普拉斯平滑的计算方法如下:991/1002=0.988,11/1002=0.012
通用版公式如下:

我最初的疑问是,为什么分母要加k(类别数)?因为你在k个分类概率的分子处都加了1,总共加了k个,为了保证全概率为1,所以分母也要加k。总体的思路是,异常值不要影响我们整体的概率。
Naive Bayes Algorithm And Laplace Smoothing的更多相关文章
- 6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python)
6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python) Introduction Here’s a situation yo ...
- 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...
- Naive Bayes Algorithm
朴素贝叶斯的核心基础理论就是贝叶斯理论和条件独立性假设,在文本数据分析中应用比较成功.朴素贝叶斯分类器实现起来非常简单,虽然其性能经常会被支持向量机等技术超越,但有时也能发挥出惊人的效果.所以,在将朴 ...
- 朴素贝叶斯法(naive Bayes algorithm)
对于给定的训练数据集,朴素贝叶斯法首先基于iid假设学习输入/输出的联合分布:然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y. 一.目标 设输入空间是n维向量的集合,输出空间为 ...
- [ML] Naive Bayes for Text Classification
TF-IDF Algorithm From http://www.ruanyifeng.com/blog/2013/03/tf-idf.html Chapter 1, 知道了"词频" ...
- [Machine Learning & Algorithm] 朴素贝叶斯算法(Naive Bayes)
生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 一.病人分类的例子 让我从一个例子 ...
- 朴素贝叶斯方法(Naive Bayes Method)
朴素贝叶斯是一种很简单的分类方法,之所以称之为朴素,是因为它有着非常强的前提条件-其所有特征都是相互独立的,是一种典型的生成学习算法.所谓生成学习算法,是指由训练数据学习联合概率分布P(X,Y ...
- 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)
朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...
- 朴素贝叶斯分类器(Naive Bayes)
1. 贝叶斯定理 如果有两个事件,事件A和事件B.已知事件A发生的概率为p(A),事件B发生的概率为P(B),事件A发生的前提下.事件B发生的概率为p(B|A),事件B发生的前提下.事件A发生的概率为 ...
随机推荐
- Mysql共享锁、排他锁、悲观锁、乐观锁
一.相关名词 |--表级锁(锁定整个表) |--页级锁(锁定一页) |--行级锁(锁定一行) |--共享锁(S锁,MyISAM 叫做读锁) |--排他锁(X锁,MyISAM 叫做写锁) |--间隙锁( ...
- React项目 - 几种CSS实践
前言团队在使用react时,不断探索,使用了很多不同的css实现方式,此篇blog总结了,react项目中常见的几种css解决方案:inline-style/radium/style-componen ...
- 埃及分数问题(带乐观估计函数的迭代加深搜索算法-IDA*)
#10022. 「一本通 1.3 练习 1」埃及分数 [题目描述] 在古埃及,人们使用单位分数的和(形如 $\dfrac{1}{a}$ 的,$a$ 是自然数)表示一切有理数.如:$\dfrac{ ...
- 解决pip源问题 安装不了第三方库问题
1. 参考链接: https://www.biaodianfu.com/python-pip.html http://blog.csdn.net/u012450329/article/details/ ...
- Vue slot-scope的理解(适合初学者)
百度上已经有很多的关于slot-scope的文章,但我感觉都是那些以前没学好,又回头学的人,他们都使用了.Vue文件,我觉得有点不适合初学者,所以我就写一篇适合初学者的. 先抛例程: <!DOC ...
- Asp.Net MVC 5使用Identity之简单的注册和登陆
由于.Net MVC 5登陆和注册方式有很多种,但是Identity方式去实现或许会更简单更容易理解 首先新建一个项目 其次如下选择Empty和MVC的选项 然后打开NuGet包管理器分别安装几个包 ...
- 读取FTP上的excel文件,并写入数据库
今天遇到一些问题,需要从ftp上读取一些excel文件,并需要将excel中的数据写入到数据库,这样就可以通过管理页面查看这些数据. 我将相关工作分为三步,1.从ftp上读取相关文件,并将excel文 ...
- "不能将值 NULL 插入列 'ID',表 列不允许有 Null 值."
问题: "不能将值 NULL 插入列 'ID',表 列不允许有 Null 值." 原因: 在进行表创建的时候没有将主键自增字段添加标识. 在使用navicat进行表创建的时候一定要 ...
- python基础--3 列表
#list类#li是list类的一个对象li=[11,22,33,22,44] #参数#在原来值最后进行整个作为元素追加 # li.append((11,22,33))#对列表本身进行操作,appen ...
- 【LeetCode】前缀树 trie(共14题)
[208]Implement Trie (Prefix Tree) (2018年11月27日) 实现基本的 trie 树,包括 insert, search, startWith 操作等 api. 题 ...