[Pytorch笔记] scatter_
https://blog.csdn.net/qq_16234613/article/details/79827006
scatter_(input, dim, index, src)将src中数据根据index中的索引按照dim的方向填进input中.
>>> x = torch.rand(, )
>>> x 0.4319 0.6500 0.4080 0.8760 0.2355
0.2609 0.4711 0.8486 0.8573 0.1029
[torch.FloatTensor of size 2x5]
1) dim = 0,分别对每列填充:
>>> torch.zeros(, ).scatter_(, torch.LongTensor([[, , , , ], [, , , , ]]), x) 0.4319 0.4711 0.8486 0.8760 0.2355
0.0000 0.6500 0.0000 0.8573 0.0000
0.2609 0.0000 0.4080 0.0000 0.1029
[torch.FloatTensor of size 3x5]
实现原理:
对于LoneTensor内的矩阵,暂且称为 tmp = [[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]];将最终的 3*5的矩阵,暂且称为result。result初始为全0,需要经过scatter_处理。
举例:
对于tmp[][] = -> 取x中x[0][0] = 0.4319,将其插入到result第列的第个位置,result[0][0] = 0.4319;
对于tmp[0][] = -> 取x中x[0][1] = 0.6500,将其插入到result第列的第个位置,result[1][1] = 0.6500;
对于tmp[0][] = -> 取x中x[0][1] = 0.4080,将其插入到result第列的第2个位置,result[2][2] = 0.4080;
......
对于tmp[1][] = -> 取x中x[1][0] = 0.2609,将其插入到result第列的第个位置,result[2][0] = 0.2609;
对于tmp[1][] = -> 取x中x[1][1] = 0.4711,将其插入到result第列的第个位置,result[0][1] = 0.4711。
......
2) dim = 1,分别对每行填充
>>> z = torch.zeros(, ).scatter_(, torch.LongTensor([[], []]), 1.23)
>>> z 0.0000 0.0000 1.2300 0.0000
0.0000 0.0000 0.0000 1.2300
[torch.FloatTensor of size 2x4]
tmp = [[2], [3]]
tmp[0][0] = 2 -> 取x中x[0][0] = 0.4319,将其插入到result第0行的第2个位置,result[0][2] = 0.4319;
......
[Pytorch笔记] scatter_的更多相关文章
- [Pytorch] pytorch笔记 <三>
pytorch笔记 optimizer.zero_grad() 将梯度变为0,用于每个batch最开始,因为梯度在不同batch之间不是累加的,所以必须在每个batch开始的时候初始化累计梯度,重置为 ...
- [Pytorch] pytorch笔记 <二>
pytorch笔记2 用到的关于plt的总结 plt.scatter scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, ...
- [Pytorch] pytorch笔记 <一>
pytorch笔记 - torchvision.utils.make_grid torchvision.utils.make_grid torchvision.utils.make_grid(tens ...
- PyTorch笔记之 scatter() 函数
scatter() 和 scatter_() 的作用是一样的,只不过 scatter() 不会直接修改原来的 Tensor,而 scatter_() 会 PyTorch 中,一般函数加下划线代表直接在 ...
- 【转载】 pytorch笔记:06)requires_grad和volatile
原文地址: https://blog.csdn.net/jiangpeng59/article/details/80667335 作者:PJ-Javis 来源:CSDN --------------- ...
- pytorch笔记:09)Attention机制
刚从图像处理的hole中攀爬出来,刚走一步竟掉到了另一个hole(fire in the hole*▽*) 1.RNN中的attentionpytorch官方教程:https://pytorch.or ...
- [pytorch笔记] 调整网络学习率
1. 为网络的不同部分指定不同的学习率 class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__init__() self ...
- [pytorch笔记] torch.nn vs torch.nn.functional; model.eval() vs torch.no_grad(); nn.Sequential() vs nn.moduleList
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和n ...
- Pytorch笔记 (3) 科学计算1
一.张量 标量 可以看作是 零维张量 向量 可以看作是 一维张量 矩阵 可以看作是 二维张量 继续扩展数据的维度,可以得到更高维度的张量 ————> 张量又称 多维数组 给定一个张量数据 ...
随机推荐
- thinkphp6下无法获取header头中的Authorization(apache版)
今天遇到在thinkphp框架中获取不到header头里边的 Authorization ,后来在.htaccess里面加多一项解决,记录下: <IfModule mod_rewrite.c&g ...
- liunx忘记用户密码
1.vim /etc/my.cnf [mysqld] skip-grant-tables ##追加此行,跳过权限表, 2.重启mysql systemctl restart mysqld 3.mysq ...
- qq 面对面传文件,应用
使用方式:打开qq,点击右上角里面的面对面传 传输内容:应用,文件 好处:不耗流量,快速
- SSM和Spring Boot常用配置比较
一.Dao层相关 1.Mysql相关: 1.1配置DataSource连接池: (1)SSM配置: <!-- 加密后配置自己写的解析文件 --> <bean class=" ...
- 第三篇 jQuery操作DOM
3-1 DOM页面文档 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http:/ ...
- 107、如何配置 Health Check ? (Swarm14)
参考https://www.cnblogs.com/CloudMan6/p/8053323.html 容器状态是UP的,那应用就是健康的吗? 不一定 Docker 只能从容器启动进程的返 ...
- 优秀java博客
https://www.jianshu.com/p/efb58b7115bf?utm_source=tuicool https://www.nowcoder.com/discuss/110317 ht ...
- js之运算符(逻辑运算符)
逻辑运算符通常用于布尔型(逻辑)值.这种情况下,它们返回一个布尔值.它经常和关系运算符一起配合使用.“&&” .“!”和“ ||” 运算符会返回一个指定操作数的值,因此,这些运算符也用 ...
- 为SourceInsight添加多行注释功能菜单
由于项目看代码主要使用的是Source Insight,习惯了其他编辑器的多行注释功能,对此感到很不习惯,查询网上程序,可以自行添加. 1.打开project,选择base项目中的utils.em,添 ...
- lambda表达式推导和使用
lambda λ希腊字母表中排序第十一位的字母,英语名称为 Lambda, 避免匿名内部类定义过多 其实质属于函数式编程的概念 (params) -> expression (params) - ...