Calculating simple running totals in SQL Server
Running total for Oracle:
SELECT somedate, somevalue,
SUM(somevalue) OVER(ORDER BY somedate 
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) 
AS RunningTotal
FROM Table
from http://www.codeproject.com/Articles/300785/Calculating-simple-running-totals-in-SQL-Server
Introduction
One typical question is, how to calculate running totals in SQL Server. There are several ways of doing it and this article tries to explain a few of them.
Test environment
First we need a table for the data. To keep things simple, let's create a table with just an auto incremented id and a value field.
--------------------------------------------------------------------
-- table for test
--------------------------------------------------------------------
CREATE TABLE RunTotalTestData (
id int not null identity(1,1) primary key,
value int not null
);
And populate it with some data:
--------------------------------------------------------------------
-- test data
--------------------------------------------------------------------
INSERT INTO RunTotalTestData (value) VALUES (1);
INSERT INTO RunTotalTestData (value) VALUES (2);
INSERT INTO RunTotalTestData (value) VALUES (4);
INSERT INTO RunTotalTestData (value) VALUES (7);
INSERT INTO RunTotalTestData (value) VALUES (9);
INSERT INTO RunTotalTestData (value) VALUES (12);
INSERT INTO RunTotalTestData (value) VALUES (13);
INSERT INTO RunTotalTestData (value) VALUES (16);
INSERT INTO RunTotalTestData (value) VALUES (22);
INSERT INTO RunTotalTestData (value) VALUES (42);
INSERT INTO RunTotalTestData (value) VALUES (57);
INSERT INTO RunTotalTestData (value) VALUES (58);
INSERT INTO RunTotalTestData (value) VALUES (59);
INSERT INTO RunTotalTestData (value) VALUES (60);
The scenario is to fetch a running total when the data is ordered ascending by the id field.
Correlated scalar query
One very traditional way is to use a correlated scalar query to fetch the running total so far. The query could look like:
--------------------------------------------------------------------
-- correlated scalar
--------------------------------------------------------------------
SELECT a.id, a.value, (SELECT SUM(b.value)
FROM RunTotalTestData b
WHERE b.id <= a.id)
FROM RunTotalTestData a
ORDER BY a.id;
When this is run, the results are:
id value running total
-- ----- -------------
1 1 1
2 2 3
3 4 7
4 7 14
5 9 23
6 12 35
7 13 48
8 16 64
9 22 86
10 42 128
11 57 185
12 58 243
13 59 302
14 60 362
So there it was. Along with the actual row values, we have a running total. The scalar query simply fetches the sum of the value field from the rows where the ID is equal or less than the value of the current row. Let us look at the execution plan:

What happens is that the database fetches all the rows from the table and using a nested loop, it again fetches the rows from which the sum is calculated. This can also be seen in the statistics:
Table 'RunTotalTestData'. Scan count 15, logical reads 30, physical reads 0...
Using join
Another variation is to use join. Now the query could look like:
--------------------------------------------------------------------
-- using join
--------------------------------------------------------------------
SELECT a.id, a.value, SUM(b.Value)
FROM RunTotalTestData a,
RunTotalTestData b
WHERE b.id <= a.id
GROUP BY a.id, a.value
ORDER BY a.id;
The results are the same but the technique is a bit different. Instead of fetching the sum for each row, the sum is created by using a GROUP BY clause. The rows are cross joined restricting the join only to equal or smaller ID values in B. The plan:

The plan looks somewhat different and what actually happens is that the table is read only twice. This can be seen more clearly with the statistics.
Table 'RunTotalTestData'. Scan count 2, logical reads 31...
The correlated scalar query has a calculated cost of 0.0087873 while the cost for the join version is 0.0087618. The difference isn't much but then again it has to be remembered that we're playing with extremely small amounts of data.
Using conditions
In real-life scenarios, restricting conditions are often used, so how are conditions applied to these queries. The basic rule is that the condition must be defined twice in both of these variations. Once for the rows to fetch and the second time for the rows from which the sum is calculated.
If we want to calculate the running total for odd value numbers, the correlated scalar version could look like the following:
--------------------------------------------------------------------
-- correlated scalar, subset
--------------------------------------------------------------------
SELECT a.id, a.value, (SELECT SUM(b.value)
FROM RunTotalTestData b
WHERE b.id <= a.id
AND b.value % 2 = 1)
FROM RunTotalTestData a
WHERE a.value % 2 = 1
ORDER BY a.id;
The results are:
id value runningtotal
-- ----- ------------
1 1 1
4 7 8
5 9 17
7 13 30
11 57 87
13 59 146
And with the join version, it could be like:
--------------------------------------------------------------------
-- with join, subset
--------------------------------------------------------------------
SELECT a.id, a.value, SUM(b.Value)
FROM RunTotalTestData a,
RunTotalTestData b
WHERE b.id <= a.id
AND a.value % 2 = 1
AND b.value % 2 = 1
GROUP BY a.id, a.value
ORDER BY a.id;
When actually having more conditions, it can be quite painful to maintain the conditions correctly. Especially if they are built dynamically.
Calculating running totals for partitions of data
If the running total needs to be calculated to different partitions of data, one way to do it is just to use more conditions in the joins. For example, if the running totals would be calculated for both odd and even numbers, the correlated scalar query could look like:
--------------------------------------------------------------------
-- correlated scalar, partitioning
--------------------------------------------------------------------
SELECT a.value%2, a.id, a.value, (SELECT SUM(b.value)
FROM RunTotalTestData b
WHERE b.id <= a.id
AND b.value%2 = a.value%2)
FROM RunTotalTestData a
ORDER BY a.value%2, a.id;
The results:
even id value running total
---- -- ----- -------------
0 2 2 2
0 3 4 6
0 6 12 18
0 8 16 34
0 9 22 56
0 10 42 98
0 12 58 156
0 14 60 216
1 1 1 1
1 4 7 8
1 5 9 17
1 7 13 30
1 11 57 87
1 13 59 146
So now the partitioning condition is added to the WHERE clause of the scalar query. When using the join version, it could be similar to:
--------------------------------------------------------------------
-- with join, partitioning
--------------------------------------------------------------------
SELECT a.value%2, a.id, a.value, SUM(b.Value)
FROM RunTotalTestData a,
RunTotalTestData b
WHERE b.id <= a.id
AND b.value%2 = a.value%2
GROUP BY a.value%2, a.id, a.value
ORDER BY a.value%2, a.id;
With SQL Server 2012
SQL Server 2012 makes life much more simpler. With this version, it's possible to define an ORDER BY clause in the OVER clause.
So to get the running total for all rows, the query would look:
--------------------------------------------------------------------
-- Using OVER clause
--------------------------------------------------------------------
SELECT a.id, a.value, SUM(a.value) OVER (ORDER BY a.id)
FROM RunTotalTestData a
ORDER BY a.id;
The syntax allows to define the ordering of the partition (which in this example includes all rows) and the summary is calculated in that order.
To define a condition for the data, it doesn't have to be repeated anymore. The running total for odd numbers would look like:
--------------------------------------------------------------------
-- Using OVER clause, subset
--------------------------------------------------------------------
SELECT a.id, a.value, SUM(a.value) OVER (ORDER BY a.id)
FROM RunTotalTestData a
WHERE a.value % 2 = 1
ORDER BY a.id;
And finally, partitioning would be:
--------------------------------------------------------------------
-- Using OVER clause, partition
--------------------------------------------------------------------
SELECT a.value%2, a.id, a.value, SUM(a.value) OVER (PARTITION BY a.value%2 ORDER BY a.id)
FROM RunTotalTestData a
ORDER BY a.value%2, a.id;
What about the plan? It's looking very different. For example, the simple running total for all rows looks like:

And the statistics:
Table 'Worktable'. Scan count 15, logical reads 85, physical reads 0...
Table 'RunTotalTestData'. Scan count 1, logical reads 2, physical reads 0...
Even though the scan count looks quite high at first glance, it isn't targeting the actual table but a worktable. The worktable is used to store intermediate results which are then read in order to create the calculated results.
The calculated cost for this query is now 0.0033428 while previously with the join version, it was 0.0087618. Quite an improvement.
References
- SUM (SQL Server 2008 R2)
- OVER (SQL Server 2008 R2)
- SUM (SQL Server 'Denali')
- OVER (SQL Server 'Denali')
from http://geekswithblogs.net/Rhames/archive/2008/10/28/calculating-running-totals-in-sql-server-2005---the-optimal.aspx
DECLARE @SalesTbl TABLE (DayCount smallint, Sales money, RunningTotal money)DECLARE @RunningTotal moneyINSERT INTO @SalesTblSET @RunningTotal = 0SELECT DayCount, Sales, nullFROM SalesORDER BY DayCountUPDATE @SalesTblSET @RunningTotal = RunningTotal = @RunningTotal + SalesFROM @SalesTblSELECT * FROM @SalesTbl
| Method | Time Taken | 
| Nested sub-query | 9300 ms | 
| Self join | 6100 ms | 
| Cursor | 400 ms | 
| Update to local variable | 140 ms | 
Note: There is a pretty big assumption in using the “Update to local variable” method. This is that the Update statement will update the rows in the temp table in the correct order. There is no simple way to specify the order for an Update statement, so potentially this method could fail, although I have not seen this actually happen yet!
I think that if I use a table variable, then the update will probably be in the correct order, because there are no indexes for the query optimizer to use, and parallellism will not occur. However, I can't be sure about this!
CREATE TABLE Sales (DayCount smallint, Sales money)CREATE CLUSTERED INDEX ndx_DayCount ON Sales(DayCount)goINSERT Sales VALUES (1,120)INSERT Sales VALUES (2,60)INSERT Sales VALUES (3,125)INSERT Sales VALUES (4,40)DECLARE @DayCount smallint, @Sales moneySET @DayCount = 5SET @Sales = 10WHILE @DayCount < 5000BEGININSERT Sales VALUES (@DayCount,@Sales)SET @DayCount = @DayCount + 1SET @Sales = @Sales + 15END
SELECT * FROM @SalesTb
参考 http://stackoverflow.com/questions/860966/calculate-a-running-total-in-sqlserver
CTE:
with CTE_RunningTotal
as
(
    select T.ord, T.total, T.total as running_total
    from #t as T
    where T.ord = 0
    union all
    select T.ord, T.total, T.total + C.running_total as running_total
    from CTE_RunningTotal as C
        inner join #t as T on T.ord = C.ord + 1
)
select C.ord, C.total, C.running_total
from CTE_RunningTotal as C
option (maxrecursion 0)
SQL Server 2012 Sum() Over()
select id,somedate,somevalue, sum(somevalue) over(order by somedate rows unbounded preceding) as runningtotal
from TestTable
Cross Apply: very simmilar to the correlated scalar query
select t.id,t.somedate,t.somevalue,rt.runningTotal
from TestTable t cross apply (select sum(somevalue) as runningTotal from TestTable where somedate <= t.somedate ) as rt
order by t.somedate
Calculating simple running totals in SQL Server的更多相关文章
- A simple way to monitor SQL server SQL performance.
		This is all begins from a mail. ... Dear sir: This is liulei. Thanks for your help about last PM for ... 
- <转>SQL Server CROSS APPLY and OUTER APPLY
		Problem SQL Server 2005 introduced the APPLY operator, which is like a join clause and it allows joi ... 
- Migrating Oracle on UNIX to SQL Server on Windows
		Appendices Published: April 27, 2005 On This Page Appendix A: SQL Server for Oracle Professionals Ap ... 
- SQL Server数据库的三种恢复模式:简单恢复模式、完整恢复模式和大容量日志恢复模式(转载)
		SQL Server数据库有三种恢复模式:简单恢复模式.完整恢复模式和大容量日志恢复模式: 1.Simple 简单恢复模式, Simple模式的旧称叫”Checkpoint with truncate ... 
- How to Kill All Processes That Have Open Connection in a SQL Server Database[关闭数据库链接 最佳方法] -摘自网络
		SQL Server database administrators may frequently need in especially development and test environmen ... 
- SQL Server 2008性能故障排查(一)——概论
		原文:SQL Server 2008性能故障排查(一)--概论 备注:本人花了大量下班时间翻译,绝无抄袭,允许转载,但请注明出处.由于篇幅长,无法一篇博文全部说完,同时也没那么快全部翻译完,所以按章节 ... 
- SQL Server数据库有三种恢复模式:简单恢复模式、完整恢复模式和大容量日志恢复模式
		SQL Server数据库有三种恢复模式:简单恢复模式.完整恢复模式和大容量日志恢复模式: 1.Simple 简单恢复模式, Simple模式的旧称叫”Checkpoint with truncate ... 
- SQL Server 查询请求
		当SQL Server 引擎接收到用户发出的查询请求时,SQL Server执行优化器将查询请求(Request)和Task绑定,并为Task分配一个Workder,SQL Server申请操作系统的 ... 
- 第16周翻译:SQL Server中的事务日志管理,级别3:事务日志、备份和恢复
		源自: http://www.sqlservercentral.com/articles/Stairway+Series/73779/ 作者: Tony Davis, 2011/09/07 翻译:刘琼 ... 
随机推荐
- winform学习之----进程和线程
			Process[] pros = Process.GetProcesses();//获取多个进程 foreach(var item in pros) { ... 
- 【转】Android APK的数字签名的作用和意义
			1. 什么是数字签名? 数字签名就是为你的程序打上一种标记,来作为你自己的标识,当别人看到签名的时候会知道它是与你相关的 2. 为什么要数字签名? 最简单直接的回答: 系统要求的. Andr ... 
- 9.0 alpha 版安装出现 could not execute command lessc 的问题
			解决方案: apt-get install node-less 
- OpenSSL使用方法
			生成CA (勾选Generate Self Signed Certificate)openssl req -nodes -x509 -sha256 -newkey rsa:4096 -keyout & ... 
- JSP简单访问数据库
			Java代码 public class DBHelper { private String driverName; private String url; private String user; p ... 
- JavaScript系列:函数调用方式
			有关JS的问题,持续更新.. 一,函数调用的4种方式 1,函数调用模式 //下面这种模式叫 “函数调用模式”:窗后window来调用 //函数调用四种方式的基础 //这tm不就是作用域this的问题吗 ... 
- ubuntu下用virtualbox安装windows虚拟机
			按照这个教程: http://jingyan.baidu.com/article/eae07827856ac21fed54856f.html 安装. 会出现问题:"VT-x is disab ... 
- Nginx 笔记与总结(7)Location:正则匹配
			在 /usr/local/nginx/conf/nginx.conf 的默认 server 段中,保留默认的 location 信息(之前测试的 location 配置删除): location / ... 
- bash shell命令行选项与修传入参数处理
			在编写shell程序时经常需要处理命令行参数,本文描述在bash下的命令行处理方式.选项与参数:如下命令行: ./test.sh -f config.conf -v --prefix=/home -f ... 
- 一些App的User-Agent
			天猫 Mozilla/5.0 (Linux; U; Android 4.4.4; zh-cn; MI 2C Build/KTU84P) AppleWebKit/537.36 (KHTML, like ... 
