poj 1179 Polygon
http://poj.org/problem?id=1179
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 5078 | Accepted: 2139 |
Description

On the first move, one of the edges is removed. Subsequent moves involve the following steps:
�pick an edge E and the two vertices V1 and V2 that are linked by E; and
�replace them by a new vertex, labelled with the result of performing the operation indicated in E on the labels of V1 and V2.
The game ends when there are no more edges, and its score is the label of the single vertex remaining.
Consider the polygon of Figure 1. The player started by removing edge 3. After that, the player picked edge 1, then edge 4, and, finally, edge 2. The score is 0. 
Write a program that, given a polygon, computes the highest possible score and lists all the edges that, if removed on the first move, can lead to a game with that score.
Input
3 <= N <= 50
For any sequence of moves, vertex labels are in the range [-32768,32767].
Output
Sample Input
4
t -7 t 4 x 2 x 5
Sample Output
33
1 2
Source
多边形游戏,有N个顶点的多边形,3 <= N <= 50 ,多边形有N条边,每个顶点中有一个数字(可正可负),每条边上或者是“+”号,或者是“*”号。边从1到N编号,首先选择一条边移去,然后进行如下操作:
1 选择一条边E和边E连接着的两个顶点V1,V2。
2 用一个新的顶点代替边E和V1、V2,新顶点的值为V1、V2中的值进行边上代表的操作得来(相加或相乘)
当最后只剩一个顶点,没有边时,游戏结束。现在的任务是编程求出最后的顶点能获得的最大值,以及输出取该最大值时,第一步需移去的边,如果有多条符合条件的边,按编号从小到大输出。
其实结题思路还是比较好想到的,枚举(枚举去掉的符号)+DP(记忆化搜索)就可以做到。但这里有一个BUG,就是负负得正,所以不能单一的枚举最大值,而要同时DP最小值。 计算最大值:
加法 max(i,j) = max(i,k)+max(k,j);
乘法 max(i,j) = MAX(max(i,k)*max(k,j),max(i,k)*min(k,j),max(k,j)*min(i,k),min(i,k)*min(k,j));(i=<k<=j) 计算最小值:
加法 min(i,j) = min(i,k)+min(k,j);
乘法 min(i,j) = MIN(max(i,k)*max(k,j),min(i,k)*min(k,j),max(k,j)*min(i,k),min(i,k)*min(k,j));(i=<k<=j)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <stack>
#include <set>
#include <queue>
#define MAX(a,b) (a) > (b)? (a):(b)
#define MIN(a,b) (a) < (b)? (a):(b)
#define mem(a) memset(a,0,sizeof(a))
#define INF 1000000007
#define MAXN 20005
using namespace std; bool op[];
int num[],dp_max[], dp_min[], n;
bool vis_max[],vis_min[];
int DP_MIN(int i,int j);
int DP_MAX(int i,int j); int DP_MAX(int i,int j)//DP求区间最大值
{
int u = i*+j;
if(vis_max[u])return dp_max[u];
vis_max[u]=;
if(j-i <= )
{
if(j==i)return dp_max[u]=num[i-];
if(!op[i])return dp_max[u]=num[i-]+num[i];
else return dp_max[u]=num[i-]*num[i];
}
dp_max[u] = -INF;
for(int k=i;k<j;k++)
{
int l=DP_MIN(i,k);
int r=DP_MIN(k+,j);
int ll=DP_MAX(i,k);
int rr=DP_MAX(k+,j);
if(!op[k])dp_max[u] = MAX(dp_max[u], ll+rr);
else dp_max[u] = MAX(dp_max[u], MAX(ll*rr,MAX(l*r,MAX(l*rr,r*ll))));
}
return dp_max[u];
} int DP_MIN(int i,int j)//DP求区间最小值
{
int u = i*+j;
if(vis_min[u])return dp_min[u];
vis_min[u]=;
if(j-i <= )
{
if(j==i)return dp_min[u]=num[i-];
if(!op[i])return dp_min[u]=num[i-]+num[i];
else return dp_min[u]=num[i-]*num[i];
}
dp_min[u] = INF;
for(int k=i;k<j;k++)
{
int l=DP_MIN(i,k);
int r=DP_MIN(k+,j);
int ll=DP_MAX(i,k);
int rr=DP_MAX(k+,j);
if(!op[k])dp_min[u] = MIN(dp_min[u], l+r);
else dp_min[u] = MIN(dp_min[u], MIN(ll*rr,MIN(l*r,MIN(l*rr,r*ll))));
}
return dp_min[u];
} int main()
{
while(~scanf("%d%*c",&n))
{
mem(op);mem(dp_max);
mem(num);mem(vis_min);
mem(vis_max);
int max=-INF,i;
char ch;
for(i=;i<n;i++)
{
scanf("%c %d%*c",&ch,&num[i]);
op[i]=op[i+n]=(ch=='x');
num[i+n]=num[i];
}
for(i=;i<n;i++)
{
max=MAX(max,DP_MAX(i+,i+n));
}
printf("%d\n",max);
int ok=;
for(i=;i<n;i++)
{
if(DP_MAX(i+,i+n) == max)
{
if(ok){printf("%d",i+);ok=;}
else printf(" %d",i+);
}
}
printf("\n");
}
return ;
}
#include<iostream>
using namespace std;
int v[]; //存放点中的数据,下标从1开始
char op[]; //存放边,下标从1开始
int max_score[][]; //max_score[i][j]表示从边i到边j所能取到的最大值
int min_score[][]; //min_score[i][j]表示从边i到边j所能取到的最小值
int n; //边、点的数量 //计算最大最小值
void calculate(int max_x, int min_x, char op, int max_y, int min_y, int &max, int &min)
{
if(op=='t')
{
max = max_x + max_y;
min = min_x + min_y;
}
else //乘法
{
int temp;
max = min = max_x * max_y; temp = max_x * min_y;
if(temp > max) max=temp;
if(temp < min) min=temp; temp = min_x * max_y;
if(temp > max) max=temp;
if(temp < min) min=temp; temp = min_x * min_y;
if(temp > max) max=temp;
if(temp < min) min=temp;
}
} int getNum(int i) //处理可能的越界问题
{
if(i>n) i-=n;
else if(i<) i += n;
return i;
} //使用动态规划找最大值并返回
int dp()
{
int i,j,k,len, max_temp, min_temp, max_value, min_value, temp,ans;
//初始化数组的边界值
for(i=; i<=n; i++)
{
j=i-; //j代表i左边的边
if(j==) j=n; if(op[i]=='t')
max_score[i][i] = min_score[i][i] = v[j] + v[i];
else
max_score[i][i] = min_score[i][i] = v[j] * v[i]; max_score[i][j] = min_score[i][j] = v[j];
} ans=<<;
for(len=; len<n; len++) //len代表从边i到边j包含多少条边
for(i=; i<=n; i++) //i代表开始边
{
j=i+len-; //j代表结束边
if(j>n) j-=n;
//计算max[i][j] min[i][j]的值, max[i][j]=max{d[i][k-1] op[k] d[k+1][j]} i<=k<=j
k=i;
calculate(max_score[i][getNum(k-)], min_score[i][getNum(k-)], op[k], max_score[getNum(k+)][j], min_score[getNum(k+)][j], max_temp, min_temp);
max_value=max_temp;
min_value=min_temp;
while(true)
{
k++;
if(k>n) k-=n;
calculate(max_score[i][getNum(k-)], min_score[i][getNum(k-)], op[k], max_score[getNum(k+)][j], min_score[getNum(k+)][j], max_temp, min_temp);
if(max_temp > max_value) max_value=max_temp;
if(min_temp < min_value) min_value=min_temp;
if(k==j) break;
}
max_score[i][j]=max_value;
min_score[i][j]=min_value;
if(len==n- && max_value>ans) ans=max_value;
} return ans;
} int main()
{
int i,j,ans;
bool first=true;; //读入数据
cin>>n;
for(i=; i<=n; i++)
{
cin>>op[i]>>v[i];
} ans=dp();
cout<<ans<<endl; //输出最大值
//输出取最大值时,第一次移去的边
for(i=; i<=n; i++)
{
j=i+n-;
if(j>n) j -= n; if(max_score[i][j] == ans)
{
if(!first) cout<<" ";
cout<<i-;
first = false;
}
}
if(max_score[][n-]==ans)
{
if(!first) cout<<" ";
cout<<n;
}
cout<<endl; return ;
}
poj 1179 Polygon的更多相关文章
- POJ 1179 - Polygon - [区间DP]
题目链接:http://poj.org/problem?id=1179 Time Limit: 1000MS Memory Limit: 10000K Description Polygon is a ...
- poj 1179 $Polygon$(断环成链)
Polygon \(solution:\) upd:还是多讲一下,这道题基本上可以说是一道思维题.一道结论题.一道考验你动态规划基本功是否扎实的题目.因为这道题的数据范围很小,思考一下总能想到断环成链 ...
- IOI 98 (POJ 1179)Polygon(区间DP)
很容易想到枚举第一步切掉的边,然后再计算能够产生的最大值. 联想到区间DP,令dp[i][l][r]为第一步切掉第i条边后从第i个顶点起区间[l,r]能够生成的最大值是多少. 但是状态不好转移,因为操 ...
- DP中环形处理 +(POJ 1179 题解)
DP中环形处理 对于DP中存在环的情况,大致有两种处理的方法: 对于很多的区间DP来说,很常见的方法就是把原来的环从任意两点断开(注意并不是直接删掉这条边),在复制一条一模一样的链在这条链的后方,当做 ...
- Mark一下, dp状态转移方程写对,可是写代码都错,poj 1651 poj 1179
dp题: 1.写状态转移方程; 2.考虑初始化边界,有意义的赋定值.还没计算的赋边界值: 3.怎么写代码自底向上计算最优值 今天做了几个基础dp,所有是dp方程写对可是初始化以及计算写错 先是poj ...
- POJ 1179 IOI1998 Polygon
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5472 Accepted: 2334 Description Polyg ...
- 【POJ 1179】Polygon
[原题链接]传送门 [题解思路] 1.第一感觉没有其他做法,想到动态规划,去环,区间dp 2.f[l,r]表示[l,r]内的最大值,考虑转移 3.最大值分加法和乘法,其中乘法不一定由两个要求合并的区间 ...
- POJ 3597 Polygon Division 多边形剖分
题目链接: http://poj.org/problem?id=3597 Polygon Division Time Limit: 2000MSMemory Limit: 131072K 问题描述 G ...
- POJ 2007--Scrambled Polygon(计算凸包,点集顺序)
Scrambled Polygon Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10094 Accepted: 476 ...
随机推荐
- error: jump to label ‘XXXX’ [-fpermissive]
http://www.cnblogs.com/foohack/p/4090124.html 下面的类似的源码在MSVC上能正确编译通过.但是gcc/g++上就会错: 1. if(expr)2. got ...
- 删除win7中的库/收藏夹/家庭组/网络
通过修改注册表删除库/收藏夹/家庭组/网络(还是不习惯库的这种管理方式, 导航里面又太占地方) 库:[HKEY_CLASSES_ROOT\CLSID\{031E4825-7B94-4dc3-B131- ...
- 关于YARN的HA
一:准备 1.规划 namenode namenode ZKFC ZKFC journalnode journalnode jou ...
- 【Java 基础篇】【第九课】继承
继承就是为了提高代码的复用率. 利用继承,我们可以避免代码的重复.让Woman类继承自Human类,Woman类就自动拥有了Human类中所有public成员的功能.我们用extends关键字表示继承 ...
- C/C++ 获取汉字拼音首字母
#include <stdint.h> #include <stdio.h> #include <ctype.h> #include <string.h> ...
- android Listview item 中有button,item就不响应触摸事件
为button设置 beanButton.getButton().setFocusable(false); beanButton.getButton().setFocusableInTouchMode ...
- [LeetCode] Binary Tree Level Order Traversal 2
Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left ...
- Linux内核socket优化项
Linux内核socket优化项 vi /etc/sysctl.confnet.core.netdev_max_backlog = 30000 每个网络接口接收数据包的速率比内核处理这些包的速率快时 ...
- mobiscroll.js 使用
使用较为详情的参考网址:http://www.lanrenmaku.com/jMobile/2014_1231_1357.html
- jQuery学习之jQuery Ajax用法详解(转)
[导读] jQuery Ajax在web应用开发中很常用,它主要包括有ajax,get,post,load,getscript等等这几种常用无刷新操作方法,下面我来给各位同学介绍介绍.我们先从最简单的 ...