1013: [JSOI2008]球形空间产生器sphere

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 1600  Solved: 860
[Submit][Status]

Description

有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

第一行是一个整数,n。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。

Output

有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

数据规模:

对于40%的数据,1<=n<=3

对于100%的数据,1<=n<=10

提示:给出两个定义:

1、 球心:到球面上任意一点距离都相等的点。

2、 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + … + (an-bn)^2 )

Source

分析:

设球心坐标为(x1,x2,x3,...,xn),球的半径为R

则可以根据N+1个点列出N+1个方程

(a1-x1)^2+(a2-x2)^2+...+(an-xn)^2=R^2 ①

(b1-x1)^2+(b2-x2)^2+...+(bn-xn)^2=R^2 ②

(c1-x1)^2+(c2-x2)^2+...+(cn-xn)^2=R^2 ③

......

然后把①-②得到2(a1-b1)x1+2(a2-b2)x2+...+2(an-bn)xn=a1^2-b1^2+a2^2-b2^2+...+an^2-bn^2

同理②-③,③-④,...都能得到类似的式子

发现N+1个方程变成了N个方程,且这N个方程左边都是一个确切的数,即N元一次方程

然后就对N个方程高斯消元求解,注意精度即可

code:

#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=10;
const double eps=1e-8;
double a[maxn+5][maxn+5],b[maxn+5][maxn+5];
int n;
int main()
{
freopen("ce.in","r",stdin);
freopen("ce.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n+1;++i)
for(int j=1;j<=n;++j)
scanf("%lf",&b[i][j]);
for(int i=1;i<=n;++i)
{
double s=0.0;
for(int j=1;j<=n;++j) a[i][j]=2.0*(b[i][j]-b[i+1][j]),s+=b[i][j]*b[i][j]-b[i+1][j]*b[i+1][j];
a[i][n+1]=s;
}
for(int i=1;i<=n;++i)
{
if(a[i][i]==0)
{
int j;
for(j=i+1;j<=n;++j) if(fabs(a[j][i]-0.0)<=eps) break;
for(int k=1;k<=n+1;++k) swap(a[i][k],a[j][k]);
}
for(int j=1;j<=n+1;++j) if(i!=j)a[i][j]/=a[i][i];a[i][i]=1.0;
for(int j=1;j<=n;++j)
if(j!=i)
{
for(int k=1;k<=n+1;++k) if(k!=i) a[j][k]-=a[i][k]*a[j][i]/a[i][i];a[j][i]=0.0;
}
}
for(int i=1;i<n;++i) printf("%.3lf ",a[i][n+1]);printf("%.3lf",a[n][n+1]);
return 0;
}

【BZOJ1013】【JSOI2008】球形空间产生器sphere(高斯消元)的更多相关文章

  1. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  2. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  3. lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元

    题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec  内 ...

  4. 【BZOJ1013】球形空间产生器(高斯消元)

    [BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...

  5. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  6. BZOJ1013球形空间产生器sphere 高斯消元

    @[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...

  7. bzoj1013球形空间产生器sphere 高斯消元(有系统差的写法

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  8. 【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题

    最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<c ...

  9. 【BZOJ1013】[JSOI2008] 球形空间产生器(高斯消元)

    点此看题面 大致题意: 给定一个\(n\)维球体上的\(n+1\)个点,请你求出这个球体的圆心的位置. 列出方程 这一看就是一道解方程题. 我们可以设这个球体的圆心的位置为\((x_1,x_2,..x ...

  10. [JSOI2008]球形空间产生器 (高斯消元)

    [JSOI2008]球形空间产生器 \(solution:\) 非常明显的一道高斯消元.给了你n+1个球上的位置,我们知道球上任何一点到球心的距离是相等,所以我们 可以利用这一个性质.我们用n+1个球 ...

随机推荐

  1. 07_旅行商问题(TSP问题,货郎担问题,经典NPC难题)

    问题来源:刘汝佳<算法竞赛入门经典--训练指南> P61 问题9: 问题描述:有n(n<=15)个城市,两两之间均有道路直接相连,给出每两个城市i和j之间的道路长度L[i][j],求 ...

  2. hdu 4856 Tunnels (记忆化搜索)

    Tunnels Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  3. C++ 基本知识

    无论父类与子类的析构函数是否是virutal,子类的析构函数都会调用父类的析构函数 调用构造函数是与构造函数顺序相反,先子类后基类,否则如果基类先析构,子类的有些资源已经不存在了,会出错. 在C++中 ...

  4. hadoop debug script

    A Hadoop job may consist of many map tasks and reduce tasks. Therefore, debugging a Hadoop job is of ...

  5. SSH web.xml文件配置

    启动一个WEB项目的时候, WEB容器会去读取它的配置文件web.xml web.xml中配置的加载优先级:context-param -> listener -> filter -> ...

  6. SPOJ AMR10I Dividing Stones --DFS

    题意:给n个石头,分成一些部分(最多n部分,随便分),问分完后每部分的数量的乘积有多少种情况. 分析:可以看出,其实每个乘积都可以分解为素数的乘积,比如乘积为4,虽然可以分解为4*1,但是更可以分解为 ...

  7. 2014 Super Training #4 G What day is that day? --两种方法

    原题: ZOJ 3785 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3785 题意:当天是星期六,问经过1^1+2^2+ ...

  8. IO流的练习3 —— 复制多级文件夹下的指定文件并改名

    需求:复制指定目录下的指定文件,并修改后缀名. 指定的文件是:.java文件. 指定的后缀名是:.jad 数据源所在文件夹:C:\Users\Administrator\Desktop\记录 目的地所 ...

  9. 转:webRTC的前世今生

    https://blog.coding.net/blog/getting-started-with-webrtc

  10. 常用excel技巧

    1.excel 设置行列分色显示  =MOD(ROW(),2)=0 2.多表匹配数据 通过身份证在另外一个表查找这个人的基本信息 第一张表 第二张表: =VLOOKUP(F12,'2014总表'!D: ...