hihocoder 1196 高斯消元.二
描述
在上一回中,小Hi和小Ho趁着便利店打折,买了一大堆零食。当他们结账后,看到便利店门口还有其他的活动。
店主:买了东西还可以参加游戏活动哦,如果能够完成游戏还有额外的奖品。
小Hi和小Ho赶紧凑了过去。
店主放了一块游戏板在店门口,有5行6列格子。左上角为坐标(1,1)。一部分格子是亮着的,另一部分是暗着的。

当按下某一个格子时,它和上下左右4个格子的状态就会改变。原来亮着的格子变成暗的,原来暗的格子会变亮。比如下图中按下标记有红叉的格子后,绿色虚线区域内的格子状态都会改变:

店主给出初始的状态,参加游戏的人员需要通过按下某些格子,让游戏板上所有的灯都亮起来就可以赢得奖品。
小Ho:这不就是开关灯问题么,看我来解决它!
本题改编自ACMICPC Greater New York 2002 EXTENDED LIGHTS OUT
输入
第1..5行:1个长度为6的字符串,表示该行的格子状态,1表示该格子是亮着的,0表示该格子是暗的。
保证一定存在解,且一定存在暗着的格子。
输出
需要按下的格子数量k,表示按下这k个位置后就可以将整个游戏板所有的格子都点亮。
接下来k行,每行一个坐标(x,y),表示需要按下格子(x,y)。x坐标较小的先输出,若x相同,则先输出y坐标较小的。
样例输入
001111
011111
111111
111110
111100
样例输出
2
1 1
5 6
- ---------------------------------------------------------------
- 异或方程组的形式为
- a[0][0]*x[0] ^ a[0][1]*x[1] ^ ... ^ a[0][n-1]*x[n-1] = a[0][n]
- a[1][0]*x[0] ^ a[1][1]*x[1] ^ ... ^ a[1][n-1]*x[n-1] = a[1][n]
- .
- .
- a[n-1][0]*x[0] ^ a[n-1][1]*x[1] ^ ... ^ a[n-1][n-1]*x[n-1] = a[n-1][n]
- 方程组中所有量都是bool量
- ----------------------------------------------------------------
- 比较异或方程组和一般的线性方程组,不难发现:
- 除了所有加号(+)都换成了异或(^)外,形式上两者是完全一致的
- 因而对于异或方程组,我们考虑是否可用类似于高斯消元解线性方程组的方法来解。
- 这就是说我们希望通过行变换将系数矩阵转化成单位矩阵。
- 对此我们有下述结论可用:
- ----------------------------------------------------------------------------------------
- 若
- a[0]*x[0] ^ a[1]*x[1] ^ ... ^ a[n-1]*x[n-1] = A
- b[0]*x[0] ^ b[1]*x[1] ^ ... ^ b[n-1]*x[n-1] = B
- 则
- (a[0]^b[0])*x[0] ^ (a[1]^b[1])*x[1] ^ ... ^ (a[n-1]^b[n-1])*x[n-1] = A ^ B
- -----------------------------------------------------------------------------------------
- 实际上我们只要证明
- a*x ^ b*x = (a ^ b)*x
- 上述结论便是很自然的推论了
- 而由于这里涉及的所有量都是bool值,只要枚举便能证明。
- 我们也可以从另一角度来看:
- 异或运算相当于模2下的加法运算,即
- a ^ b = (a + b) % 2
- 我们有
- (a*x + b*x) % 2
- = ((a+b)*x) % 2
- = ((a+b) % 2) * (x % 2) % 2
- 在 a, b, x都是bool量的情况下
- 上式即
- a*x ^ b*x = (a ^ b)*x
- 这样异或(^)与加法(+)两种运算便自然联系起来了,异或方程组与一般的线性方程组本质上没有区别。
- --------------------------------------------------------------------------------------------------------
- 异或方程组的高斯消元过程同样是:
- 枚举行,对第i行,在第i列选主元交换到第i行。将其余该列为1的行,用第i行与之异或。
- --------------------------------------------------------------------------------------------------------
#include <bits/stdc++.h>
using namespace std;
char s[][];
int a[][];
int dx[]={, , , , -};
int dy[]={, , -, , };
int ok(int x, int y){
return x>=&&x<&&y>=&&y<;
}
int swap(int i, int j){
int tmp[];
memcpy(tmp, a[i], sizeof(tmp));
memcpy(a[i], a[j], sizeof(tmp));
memcpy(a[j], tmp, sizeof(tmp));
} int gauss(int n){
for(int i=; i<n; i++){
for(int j=i; j<n; j++)
if(a[j][i]){
swap(i, j);
break;
}
for(int j=; j<n; j++)
if(j!=i&&a[j][i]){
//消去第j行第i项
for(int k=i; k<=n; k++)
a[j][k]^=a[i][k];
}
//output();
}
} int main(){
for(int i=; i<; i++)
cin>>s[i];
for(int i=; i<; i++)
for(int j=; j<; j++){
int now=*i+j;
for(int k=; k<; k++){
int x=i+dx[k], y=j+dy[k];
if(ok(x, y)){
int nei=*x+y;
a[now][nei]=;
}
}
a[now][]=(s[i][j]-'')^;
}
gauss();
int ans=;
for(int i=; i<; i++)
ans+=a[i][];
cout<<ans<<endl;
for(int i=; i<; i++)
if(a[i][])
cout<<i/+<<' '<<i%+<<endl;
}
hihocoder 1196 高斯消元.二的更多相关文章
- hihoCoder 1196 高斯消元·二
Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...
- hihoCoder#1196 : 高斯消元·二(开关灯问题)
传送门 高斯消元解异或方程组 小Ho在游戏板上忙碌了30分钟,任然没有办法完成,于是他只好求助于小Hi. 小Ho:小Hi,这次又该怎么办呢? 小Hi:让我们来分析一下吧. 首先对于每一个格子的状态,可 ...
- hiho #1196 : 高斯消元·二
#1196 : 高斯消元·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中,小Hi和小Ho趁着便利店打折,买了一大堆零食.当他们结账后,看到便利店门口还有其 ...
- hihocoder 第五十二周 高斯消元·二【高斯消元解异或方程 难点【模板】】
题目地址:http://hihocoder.com/contest/hiho57/problem/1 输入 第1..5行:1个长度为6的字符串,表示该行的格子状态,1表示该格子是亮着的,0表示该格子是 ...
- HihoCoder 1195 高斯消元·一(高斯消元)
题意 https://hihocoder.com/problemset/problem/1195 思路 高斯消元是解决高元方程的一种算法,复杂度 \(O(n^3)\) . 过程大致是: 构造一个未知数 ...
- hihoCoder 1195 高斯消元.一
传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:喂不得了啦,那边便利店的薯片半价了! 小Hi:啥?! 小Ho:那边的便利店在打折促销啊. 小Hi:走走走, ...
- hihoCoder #1195 高斯消元·一
题意:便利店老板为了促销,推出了组合包的形式,将不同数量的各类商品打包成一个组合.比如2袋薯片,1听可乐的组合只要5元,而1袋薯片,2听可乐的组合只要4元.通过询问老板知道:一共有N种不同的商品和M种 ...
- [HIHO1196]高斯消元·二(高斯消元、枚举自由变元)
题目链接:http://hihocoder.com/problemset/problem/1196 #include <bits/stdc++.h> using namespace std ...
- [hihoCoder] 高斯消元·一 [TPLY]
高斯消元一 题目链接 : http://hihocoder.com/problemset/problem/1195?sid=1269842 很"好aoaoaoaoaoaoa"的高斯 ...
随机推荐
- 关于codereview工具与建议
http://www.ibm.com/developerworks/rational/library/11-proven-practices-for-peer-review/
- 6月27日 OGDF不同的布局算法
检查不同布局算法 备注 CircularLayout 可以非连通 FastMultipoleMultilevelEmbedder FMMMLayout 可以非连通 StressMajoriz ...
- Android中Intent传值与Bundle传值的区别详解
Android中Intent传值与Bundle传值的区别详解 举个例子我现在要从A界面跳转到B界面或者C界面 这样的话 我就需要写2个Intent如果你还要涉及的传值的话 你的Intent就要写两 ...
- WinForm 快捷键设置
一.窗体快捷键,只在窗体上有效果 首先在form_load的时候写上this.KeyPreview=true;//表示窗体接受按键事件 然后如下 private void Frm_KeyDown(ob ...
- Quartz Cron 触发器 Cron Expression 的格式
转自:http://blog.csdn.net/yefengmeander/article/details/5985064 上一文中提到 Cron触发器可以接受一个表达式来指定执行JOB,下面看看这个 ...
- 转载:有关SQL server connection Keep Alive 的FAQ(2)
转: http://blogs.msdn.com/b/apgcdsd/archive/2012/05/18/sql-server-connection-keep-alive-faq-2.aspx 在下 ...
- Linux常用指令---tar | zip (解压缩)
减少文件大小有两个明显的好处,一是可以减少存储空间,二是通过网络传输文件时,可以减少传输的时间.gzip是在Linux系统中经常使用的一个对文件进行压缩和解压缩的命令,既方便又好用.gzip不仅可以用 ...
- [CareerCup] 9.4 Subsets 子集合
9.4 Write a method to return all subsets of a set. LeetCode上的原题,请参见我之前的博客Subsets 子集合和Subsets II 子集合之 ...
- IOS开发之——reveal 的使用
Reveal是一个iOS程序界面调试工具.使用Reveal,我们可以在iOS开发时动态地查看和修改应用程序的界面. 对于动态或复杂的交互界面,手写UI是不可避免的.通过Reveal,我们可以方便地调试 ...
- 详解.NET IL代码
一.前言 IL是什么? Intermediate Language (IL)微软中间语言 C#代码编译过程? C#源代码通过LC转为IL代码,IL主要包含一些元数据和中间语言指令: JIT编译器把IL ...