传送门

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

在上一回中,小Hi和小Ho趁着便利店打折,买了一大堆零食。当他们结账后,看到便利店门口还有其他的活动。

店主:买了东西还可以参加游戏活动哦,如果能够完成游戏还有额外的奖品。

小Hi和小Ho赶紧凑了过去。

店主放了一块游戏板在店门口,有5行6列格子。左上角为坐标(1,1)。一部分格子是亮着的,另一部分是暗着的。

当按下某一个格子时,它和上下左右4个格子的状态就会改变。原来亮着的格子变成暗的,原来暗的格子会变亮。比如下图中按下标记有红叉的格子后,绿色虚线区域内的格子状态都会改变:

店主给出初始的状态,参加游戏的人员需要通过按下某些格子,让游戏板上所有的灯都亮起来就可以赢得奖品。

小Ho:这不就是开关灯问题么,看我来解决它!

本题改编自ACMICPC Greater New York 2002 EXTENDED LIGHTS OUT

提示:异或方程组

输入

第1..5行:1个长度为6的字符串,表示该行的格子状态,1表示该格子是亮着的,0表示该格子是暗的。

保证一定存在解,且一定存在暗着的格子。

输出

需要按下的格子数量k,表示按下这k个位置后就可以将整个游戏板所有的格子都点亮。

接下来k行,每行一个坐标(x,y),表示需要按下格子(x,y)。x坐标较小的先输出,若x相同,则先输出y坐标较小的。

样例输入

001111
011111
111111
111110
111100

样例输出

2
1 1
5 6
---------------------------------------------------------------
异或方程组的形式为
a[0][0]*x[0] ^ a[0][1]*x[1] ^ ... ^ a[0][n-1]*x[n-1] = a[0][n]
a[1][0]*x[0] ^ a[1][1]*x[1] ^ ... ^ a[1][n-1]*x[n-1] = a[1][n]
                 .
                 .
a[n-1][0]*x[0] ^ a[n-1][1]*x[1] ^ ... ^ a[n-1][n-1]*x[n-1] = a[n-1][n]
方程组中所有量都是bool
----------------------------------------------------------------
比较异或方程组和一般的线性方程组,不难发现:
除了所有加号(+)都换成了异或(^)外,形式上两者是完全一致的
因而对于异或方程组,我们考虑是否可用类似于高斯消元解线性方程组的方法来解。
这就是说我们希望通过行变换将系数矩阵转化成单位矩阵
对此我们有下述结论可用:
----------------------------------------------------------------------------------------
a[0]*x[0] ^ a[1]*x[1] ^ ... ^ a[n-1]*x[n-1] = A
b[0]*x[0] ^ b[1]*x[1] ^ ... ^ b[n-1]*x[n-1] = B
(a[0]^b[0])*x[0] ^ (a[1]^b[1])*x[1] ^ ... ^ (a[n-1]^b[n-1])*x[n-1] = A ^ B
-----------------------------------------------------------------------------------------
实际上我们只要证明
a*x ^ b*x = (a ^ b)*x
上述结论便是很自然的推论了
而由于这里涉及的所有量都是bool值,只要枚举便能证明。
我们也可以从另一角度来看:
异或运算相当于模2下的加法运算,即
  a ^ b = (a + b) % 2
我们有
(a*x + b*x) % 2
= ((a+b)*x) % 2
= ((a+b) % 2) * (x % 2) % 2
在 a, b, x都是bool量的情况下
上式即
a*x ^ b*x = (a ^ b)*x
这样异或(^)与加法(+)两种运算便自然联系起来了,异或方程组与一般的线性方程组本质上没有区别。
--------------------------------------------------------------------------------------------------------
异或方程组的高斯消元过程同样是:
枚举行,对第i行,在第i列选主元交换到第i行。将其余该列为1的行,用第i行与之异或。
--------------------------------------------------------------------------------------------------------
#include <bits/stdc++.h>
using namespace std;
char s[][];
int a[][];
int dx[]={, , , , -};
int dy[]={, , -, , };
int ok(int x, int y){
return x>=&&x<&&y>=&&y<;
}
int swap(int i, int j){
int tmp[];
memcpy(tmp, a[i], sizeof(tmp));
memcpy(a[i], a[j], sizeof(tmp));
memcpy(a[j], tmp, sizeof(tmp));
} int gauss(int n){
for(int i=; i<n; i++){
for(int j=i; j<n; j++)
if(a[j][i]){
swap(i, j);
break;
}
for(int j=; j<n; j++)
if(j!=i&&a[j][i]){
//消去第j行第i项
for(int k=i; k<=n; k++)
a[j][k]^=a[i][k];
}
//output();
}
} int main(){
for(int i=; i<; i++)
cin>>s[i];
for(int i=; i<; i++)
for(int j=; j<; j++){
int now=*i+j;
for(int k=; k<; k++){
int x=i+dx[k], y=j+dy[k];
if(ok(x, y)){
int nei=*x+y;
a[now][nei]=;
}
}
a[now][]=(s[i][j]-'')^;
}
gauss();
int ans=;
for(int i=; i<; i++)
ans+=a[i][];
cout<<ans<<endl;
for(int i=; i<; i++)
if(a[i][])
cout<<i/+<<' '<<i%+<<endl;
}

hihocoder 1196 高斯消元.二的更多相关文章

  1. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  2. hihoCoder#1196 : 高斯消元·二(开关灯问题)

    传送门 高斯消元解异或方程组 小Ho在游戏板上忙碌了30分钟,任然没有办法完成,于是他只好求助于小Hi. 小Ho:小Hi,这次又该怎么办呢? 小Hi:让我们来分析一下吧. 首先对于每一个格子的状态,可 ...

  3. hiho #1196 : 高斯消元·二

    #1196 : 高斯消元·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中,小Hi和小Ho趁着便利店打折,买了一大堆零食.当他们结账后,看到便利店门口还有其 ...

  4. hihocoder 第五十二周 高斯消元·二【高斯消元解异或方程 难点【模板】】

    题目地址:http://hihocoder.com/contest/hiho57/problem/1 输入 第1..5行:1个长度为6的字符串,表示该行的格子状态,1表示该格子是亮着的,0表示该格子是 ...

  5. HihoCoder 1195 高斯消元·一(高斯消元)

    题意 https://hihocoder.com/problemset/problem/1195 思路 高斯消元是解决高元方程的一种算法,复杂度 \(O(n^3)\) . 过程大致是: 构造一个未知数 ...

  6. hihoCoder 1195 高斯消元.一

    传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:喂不得了啦,那边便利店的薯片半价了! 小Hi:啥?! 小Ho:那边的便利店在打折促销啊. 小Hi:走走走, ...

  7. hihoCoder #1195 高斯消元·一

    题意:便利店老板为了促销,推出了组合包的形式,将不同数量的各类商品打包成一个组合.比如2袋薯片,1听可乐的组合只要5元,而1袋薯片,2听可乐的组合只要4元.通过询问老板知道:一共有N种不同的商品和M种 ...

  8. [HIHO1196]高斯消元·二(高斯消元、枚举自由变元)

    题目链接:http://hihocoder.com/problemset/problem/1196 #include <bits/stdc++.h> using namespace std ...

  9. [hihoCoder] 高斯消元·一 [TPLY]

    高斯消元一 题目链接 : http://hihocoder.com/problemset/problem/1195?sid=1269842 很"好aoaoaoaoaoaoa"的高斯 ...

随机推荐

  1. android图片缩小和放大Matrix

    /**Bitmap放大的方法*/ private static Bitmap big(Bitmap bitmap) { Matrix matrix = new Matrix(); matrix.pos ...

  2. HTML5-WebSocket技术学习(1)

    WebSocket是为解决客户端与服务端实时通信而产生的技术. 介绍它是什么的废话不多说了,直接说怎么用: 客户端: 1.创建一个 EventSource 对象 var es = new EventS ...

  3. UICollectionView使用

    本文原文 原文转自 1.1. Collection View 全家福: UICollectionView, UITableView, NSCollectionView n   不直接等效于NSColl ...

  4. 12Spring_AOP编程(AspectJ)_前置通知

    接下里的博客会一篇一篇的讲解每一个通知.其实AOP_AspectJ的编程与传统的AOP的编程的最大的区别就是写一个Aspect 支持多个Advice和多个PointCut .而且我们写AOP_Aspc ...

  5. Bolts-Android

    对Android客户端编程来说,有个明确的规则是不能在ui线程里面做耗时的操作.这样就要求网络请求.文件读写等等操作都要异步操作.而异步操作完成后,往往需要再更新ui界面.最直接的想法是回调,只要保证 ...

  6. 实战:ADFS3.0单点登录系列-总览

    本系列将以一个实际项目为背景,介绍如何使用ADFS3.0实现SSO.其中包括SharePoint,MVC,Exchange等应用程序的SSO集成. 整个系列将会由如下几个部分构成: 实战:ADFS3. ...

  7. 【原创】Junit4详解一:Junit总体介绍

    Junit是一个可编写重复测试的简单框架,是基于Xunit架构的单元测试框架的实例.Junit4最大的改进是大量使用注解(元数据),很多实际执行过程都在Junit的后台做完了,而且写test case ...

  8. python中class 的一行式构造器

    好处:避免类初始化时大量重复的赋值语句 用到了魔法__dict__ # 一行式构造器 class Test(): # 初始化 def __init__(self, a, b, c=2, d=3, e= ...

  9. 详解SpringMVC中Controller的方法中参数的工作原理[附带源码分析]

    目录 前言 现象 源码分析 HandlerMethodArgumentResolver与HandlerMethodReturnValueHandler接口介绍 HandlerMethodArgumen ...

  10. 关于页面滚动值scrollTop在FireFox与Chrome浏览器间的兼容问题

    需求 最近在做博客的目录功能,发现一个在现代浏览器间的一个bug,或是称之为差异,即页面滚动值(scrollTop)的获取与设定. 在此之前先说一下关于页面元素的坐标获取,这张图的经典性不必再提. 实 ...