第一个spark+scala程序
import org.apache.spark._
import SparkContext._
import java.util.{Calendar,Properties,Date,Locale}
import java.text.SimpleDateFormat
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.Formatter;
//热度-订阅数 2 发文频率 3 文章质量 5
//最高是十分 >10 也是=10
object WordCount {
//http://blog.chinaunix.net/uid-25885064-id-3430852.html
//scala时间处理-获取今天日期,昨天日期,本周时间,本月时间,时间戳转换日期,时间比较
//http://blog.csdn.net/springlustre/article/details/47273353
//update xrk_wx_openaccounts set hscore='' where openid='';
//fscore
//qscore
//update xrk_wx_openaccounts set fscore='',qscore='' where openid='';
def format1(value:Double ):String ={
var bd:BigDecimal = new BigDecimal(value)
bd = bd.setScale(2, RoundingMode.HALF_UP)
return bd.toString();
}
def rethscoreSql(hscore:Double,openid:String):String={
var sql:String="update xrk_wx_openaccounts set hscore='"+format1(hscore)+"' where openid='"+openid+"';"
sql
}
def retfscoreqscoreSql(fscore:Double,qscore:Double,openid:String):String={
var sql:String="update xrk_wx_openaccounts set fscore='"+format1(fscore)+"',qscore='"+format1(qscore)+"' where openid='"+openid+"';"
sql
}
//今天
def getNowDate():String={
var now:Date = new Date()
var dateFormat:SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
var NowTime = dateFormat.format( now )
NowTime
}
//获取昨天的日期
def getYesterday():String={
var dateFormat:SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")
var cal:Calendar=Calendar.getInstance()
cal.add(Calendar.DATE,-1)
var yesterday=dateFormat.format(cal.getTime())
yesterday
}
//获取7天前的日期
def get_7day():String={
var dateFormat:SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")
var cal:Calendar=Calendar.getInstance()
cal.add(Calendar.DATE,-7)
var yesterday=dateFormat.format(cal.getTime())
yesterday
}
// 字符串 转成时间
def strtoDate(tm:String):Date={
//val loc = new Locale("en")
// val fm = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss",loc)
val fm = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
// val tm = "30/Jul/2015:05:00:50"
val dt2 = fm.parse(tm);
dt2
}
// 字符串 转成时间戳
def strtoDatetolong(tm:String):Long={
val dt= strtoDate(tm)
val ldt=dt.getTime()
ldt
}
def main(args: Array[String]) {
/*
* 总文章数 TotalArticle
总点击数 TotalClick
总阅读数 TotalReadNum
订阅号总数TotalOpenNum
平均文章数AvgArticle
平均点击数AvgClick
平均阅读数AvgReadNum
每个订阅号的文章数量OpenArticle
每个订阅号的总点击数OpenClick
每个订阅号的总阅读数OpenReadNum
每个订阅号的平均文章数量AvgOpenArticle
每个订阅号的平均击数AvgOpenClick
每个订阅号的平均阅读数AvgOpenReadNum
*
*
* */
if (args.length < 4 ){
println(" spark://192.168.16.119:7077 SparkSubmit_Demo ")
println(" /wxcontentdb/xrk_wx_articles/part-m-00000")
println(" /outtxt")
println(args.length.toString())
println(args(0))
return
}
def _float(line:String):Int={
val fileds = line.split("\t")
val timeLong=strtoDatetolong(fileds(3))
val _7dayTime=strtoDatetolong(get_7day())
if(timeLong>_7dayTime) 1 else 0
}
//大于10 小于 0.1
def fenzhi(fenzi:Double,fenmu:Double):Double={
var __fenzhi:Double=0.00
__fenzhi=(fenzi/fenmu)
if(__fenzhi>10){ 10.00
}else if(__fenzhi<0.1){ 0.00
}else{format1(__fenzhi).toDouble}
}
val conf = new SparkConf()
.setMaster(args(0))
.setAppName(args(1))
.set("spark.executor.memory", "3g")
val sc = new SparkContext(conf)
val xrk_wx_userorder = sc.textFile(args(3))//xrk_wx_userorder
//总条数xrk_wx_userorder_total_num
//总记录xrk_wx_userorder_total_record
//平均值xrk_wx_userorder_avg
val xrk_wx_userorder_total_num=xrk_wx_userorder.count()
val openid_num=xrk_wx_userorder.map(line => {val fileds = line.split("\t") ;( fileds(2))}).map((_,1)).reduceByKey(_ + _).map(x=>(x._2, x._1)).sortByKey(true).map(x=>(x._2,x._1))
val xrk_wx_userorder_total_record=openid_num.count()
val xrk_wx_userorder_avg = (xrk_wx_userorder_total_num/xrk_wx_userorder_total_record).toLong
val openid_num_ex=openid_num.map(x=>(x._1, x._2,xrk_wx_userorder_avg,fenzhi(x._2,xrk_wx_userorder_avg)))
/////////////////////////
val lines = sc.textFile(args(2))//wxcontentdb
//openid+time
val openid_time=lines.map(line => {val fileds = line.split("\t") ;( fileds(1)+"\t"+fileds(3))}).map((_,1)).reduceByKey(_ + _)
val _openid_time=openid_time.map(x=>(x._1.split("\t")(0))).map((_,1)).reduceByKey(_ + _).keyBy(top=>top._1)
//
val TotalArticle=lines.count()
val TotalClick= lines.map(line => {val fileds = line.split("\t") ;( fileds(4).toLong)}).reduce((a,b) => a+b)
val TotalReadNum= lines.map(line => {val fileds = line.split("\t") ;( fileds(5).toLong)}).reduce((a,b) => a+b)
val OpenArticle = lines.map(_.split("\t")(1)).map((_,1)).reduceByKey(_ + _)
val TotalOpenNum=OpenArticle.count()
val OpenClick=lines.map(line => {val fileds = line.split("\t") ;( fileds(1).toString(),fileds(4).toLong)}).reduceByKey(_ + _)
val OpenReadNum=lines.map(line => {val fileds = line.split("\t") ;( fileds(1).toString(),fileds(5).toLong)}).reduceByKey(_ + _)
//val txt= OpenArticle.map(x=>(x._2, x._1)).sortByKey(true).map(x=>(x._2,x._1))
val _OpenClick=OpenClick.keyBy(top=>top._1)
val _OpenReadNum=OpenReadNum.keyBy(top=>top._1)
val list= OpenArticle.keyBy(top=>top._1).join(_OpenClick).join(_OpenReadNum).join(_openid_time).map(f => (f._1, f._2._1._1._1._2, f._2._1._1._2._2, f._2._1._2._2, f._2._2._2))
val AvgClick=TotalClick/TotalOpenNum
val AvgReadNum=TotalReadNum/TotalOpenNum
// val txt=list.map(f =>(f._1,f._2,f._3,f._4,f._5,TotalArticle,TotalOpenNum,TotalClick,TotalReadNum));
val txt=list.map(f =>(f._1,fenzhi(f._3,AvgClick),fenzhi(f._4,AvgReadNum), fenzhi(f._2*10,8*14)/2.00+f._5*10.00/14.00/2.00 ))
//.keyBy(top=>top._2).sortByKey(true)
val _txt=txt.map(f =>{retfscoreqscoreSql((f._2+f._3)/2,f._4,f._1)})
val _openid_num_ex=openid_num_ex.map(f =>{rethscoreSql(f._4,f._1)})
// val _txt__openid_num_ex=_txt+"\n"+_openid_num_ex
// 文章数 点击 阅读 发文
//.map((_,TotalArticle,TotalClick,TotalReadNum))
//openid_num_ex.saveAsTextFile(args(4))
_openid_num_ex.saveAsTextFile(args(4))
_txt.saveAsTextFile(args(5))
sc.stop()
//val beginnow =new Date();
//val mbegindate = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") format beginnow
}
}
////////////////////////////////////////////////////////////提交///////////////////////////////////////////
/spark-1.0.2/bin/spark-submit --class WordCount spark-wordcount-in-scala.jar spark://192.168.16.119:7077 SparkSubmit_Demo /user/root/wxcontentdb/part-m-00000 /user/root/xrk_wx_userorder/part-m-00000 outtxt1 outtxt2 –num-workers 1 –master-memory 2g –worker-memory 2g
第一个spark+scala程序的更多相关文章
- [大数据从入门到放弃系列教程]第一个spark分析程序
[大数据从入门到放弃系列教程]第一个spark分析程序 原文链接:http://www.cnblogs.com/blog5277/p/8580007.html 原文作者:博客园--曲高终和寡 **** ...
- 一个 Spark 应用程序的完整执行流程
一个 Spark 应用程序的完整执行流程 1.编写 Spark Application 应用程序 2.打 jar 包,通过 spark-submit 提交执行 3.SparkSubmit 提交执行 4 ...
- intellij 调试spark scala 程序 报错
spark用的是cdh spark-2.0.1 package main.scala import org.apache.spark.rdd.RDD import org.apache.spark.{ ...
- Spark集群 + Akka + Kafka + Scala 开发(2) : 开发一个Spark应用
前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境,我们已经部署好了一个Spark的开发环境. 本文的目标是写一个Spark应用,并可以在集群中测试. ...
- 利用Scala语言开发Spark应用程序
Spark内核是由Scala语言开发的,因此使用Scala语言开发Spark应用程序是自然而然的事情.如果你对Scala语言还不太熟悉,可 以阅读网络教程A Scala Tutorial for Ja ...
- Spark官方文档——本地编写并运行scala程序
快速开始 本文将介绍如何用scala.java.python编写一个spark单击模式的程序. 首先你只需要在一台机器上成功建造Spark:做法: 进入Spark的根目录,输入命令:$ sbt/sbt ...
- 第一个Spark程序
1.Java下Spark开发环境搭建(from http://www.cnblogs.com/eczhou/p/5216918.html) 1.1.jdk安装 安装oracle下的jdk,我安装的是j ...
- Spark认识&环境搭建&运行第一个Spark程序
摘要:Spark作为新一代大数据计算引擎,因为内存计算的特性,具有比hadoop更快的计算速度.这里总结下对Spark的认识.虚拟机Spark安装.Spark开发环境搭建及编写第一个scala程序.运 ...
- IDEA搭建scala开发环境开发spark应用程序
通过IDEA搭建scala开发环境开发spark应用程序 一.idea社区版安装scala插件 因为idea默认不支持scala开发环境,所以当需要使用idea搭建scala开发环境时,首先需要安 ...
随机推荐
- AsyncTask和Handler
AsyncTask实现的原理和适用的优缺点 AsyncTask,是android提供的轻量级的异步类,可以直接继承AsyncTask,在类中实现异步操作,并提供接口反馈当前异步执行的程度(可以通过接口 ...
- 第 4 章 MySQL 安全管理
前言 对于任何一个企业来说,其数据库系统中所保存数据的安全性无疑是非常重要的,尤其是公司的有些商业数据,可能数据就是公司的根本,失去了数据的安全性,可能就是失去了公司的一切.本章将针对 MySQL 的 ...
- R语言机器学习之caret包运用
在大数据如火如荼的时候,机器学习无疑成为了炙手可热的工具,机器学习是计算机科学和统计学的交叉学科, 旨在通过收集和分析数据的基础上,建立一系列的算法,模型对实际问题进行预测或分类. R语言无疑为我们提 ...
- Junit4测试Spring
使用Junit4.4测试 在类上的配置Annotation @RunWith(SpringJUnit4ClassRunner.class) 用于配置spring中测试的环境 @ContextCon ...
- ProxySQL的相关维护说明
背景: 前面的2篇文章MySQL ProxySQL读写分离使用初探和MySQL ProxySQL读写分离实践大致介绍了ProxySQL的使用说明,从文章的测试的例子中看到ProxySQL使用SQLIT ...
- 可视化之Berkeley Earth
去年冬天雾霾严重的那几天,写了两篇关于空气质量的文章,<可视化之PM2.5>和<谈谈我对雾霾的认识>.坦白说,环境问题是一个无法逃避又无能为力的话题.最近因为工作中有一些数据可 ...
- Eclipse用法:自动生成get和set方法
方法一 Java的类中,除了常量声明为静态且公有的,一般的对象数据作用域,都是声明为私有的.这样做能保护对象的属性不会被随意改变,调试的时候也会方便很多:在类的公有方法中大一个调用栈就能看到哪里改 ...
- Coursera 机器学习笔记(二)
主要为第三周课程内容:逻辑回归与正则化 逻辑回归(Logistic Regression) 一.逻辑回归模型引入 分类问题是指尝试预测的是结果是否属于某一个类. 维基百科的定义为:根据已知训练区提供的 ...
- 关于 vue-cli v2.8.2
我在撰写<Vue2实践揭秘>时采用的 vue-cli 版本是 v2.5.1,由于实体书的出版周期比电子书的要长,所以到全书出版vue-cli已经更新到 v2.8.2 了,我在书中曾经对 v ...
- mac Path had bad ownership/permissions
解决方案: http://stackoverflow.com/questions/28063598/error-while-executing-plist-file-path-had-bad-owne ...