import org.apache.spark._
import SparkContext._
import java.util.{Calendar,Properties,Date,Locale}
import java.text.SimpleDateFormat

import java.math.BigDecimal;
import java.math.RoundingMode;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.Formatter;

//热度-订阅数 2 发文频率 3 文章质量 5
//最高是十分 >10 也是=10

object WordCount {
//http://blog.chinaunix.net/uid-25885064-id-3430852.html

//scala时间处理-获取今天日期,昨天日期,本周时间,本月时间,时间戳转换日期,时间比较
//http://blog.csdn.net/springlustre/article/details/47273353

//update xrk_wx_openaccounts set hscore='' where openid='';

//fscore
//qscore

//update xrk_wx_openaccounts set fscore='',qscore='' where openid='';

def format1(value:Double ):String ={

var bd:BigDecimal = new BigDecimal(value)

bd = bd.setScale(2, RoundingMode.HALF_UP)

return bd.toString();

}

def rethscoreSql(hscore:Double,openid:String):String={

var sql:String="update xrk_wx_openaccounts set hscore='"+format1(hscore)+"' where openid='"+openid+"';"
sql

}

def retfscoreqscoreSql(fscore:Double,qscore:Double,openid:String):String={

var sql:String="update xrk_wx_openaccounts set fscore='"+format1(fscore)+"',qscore='"+format1(qscore)+"' where openid='"+openid+"';"
sql

}

//今天
def getNowDate():String={
var now:Date = new Date()
var dateFormat:SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
var NowTime = dateFormat.format( now )
NowTime
}
//获取昨天的日期
def getYesterday():String={
var dateFormat:SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")
var cal:Calendar=Calendar.getInstance()
cal.add(Calendar.DATE,-1)
var yesterday=dateFormat.format(cal.getTime())
yesterday
}

//获取7天前的日期
def get_7day():String={
var dateFormat:SimpleDateFormat = new SimpleDateFormat("yyyy-MM-dd")
var cal:Calendar=Calendar.getInstance()
cal.add(Calendar.DATE,-7)
var yesterday=dateFormat.format(cal.getTime())
yesterday
}

// 字符串 转成时间
def strtoDate(tm:String):Date={
//val loc = new Locale("en")
// val fm = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss",loc)

val fm = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
// val tm = "30/Jul/2015:05:00:50"
val dt2 = fm.parse(tm);
dt2
}

// 字符串 转成时间戳
def strtoDatetolong(tm:String):Long={
val dt= strtoDate(tm)
val ldt=dt.getTime()
ldt
}

def main(args: Array[String]) {
/*
* 总文章数 TotalArticle
总点击数 TotalClick
总阅读数 TotalReadNum
订阅号总数TotalOpenNum

平均文章数AvgArticle
平均点击数AvgClick
平均阅读数AvgReadNum

每个订阅号的文章数量OpenArticle
每个订阅号的总点击数OpenClick
每个订阅号的总阅读数OpenReadNum

每个订阅号的平均文章数量AvgOpenArticle
每个订阅号的平均击数AvgOpenClick
每个订阅号的平均阅读数AvgOpenReadNum
*
*
* */

if (args.length < 4 ){
println(" spark://192.168.16.119:7077 SparkSubmit_Demo ")
println(" /wxcontentdb/xrk_wx_articles/part-m-00000")
println(" /outtxt")
println(args.length.toString())
println(args(0))
return
}

def _float(line:String):Int={
val fileds = line.split("\t")
val timeLong=strtoDatetolong(fileds(3))
val _7dayTime=strtoDatetolong(get_7day())

if(timeLong>_7dayTime) 1 else 0

}

//大于10 小于 0.1

def fenzhi(fenzi:Double,fenmu:Double):Double={

var __fenzhi:Double=0.00

__fenzhi=(fenzi/fenmu)

if(__fenzhi>10){ 10.00
}else if(__fenzhi<0.1){ 0.00
}else{format1(__fenzhi).toDouble}

}

val conf = new SparkConf()
.setMaster(args(0))
.setAppName(args(1))
.set("spark.executor.memory", "3g")
val sc = new SparkContext(conf)

val xrk_wx_userorder = sc.textFile(args(3))//xrk_wx_userorder
//总条数xrk_wx_userorder_total_num
//总记录xrk_wx_userorder_total_record
//平均值xrk_wx_userorder_avg

val xrk_wx_userorder_total_num=xrk_wx_userorder.count()

val openid_num=xrk_wx_userorder.map(line => {val fileds = line.split("\t") ;( fileds(2))}).map((_,1)).reduceByKey(_ + _).map(x=>(x._2, x._1)).sortByKey(true).map(x=>(x._2,x._1))

val xrk_wx_userorder_total_record=openid_num.count()
val xrk_wx_userorder_avg = (xrk_wx_userorder_total_num/xrk_wx_userorder_total_record).toLong

val openid_num_ex=openid_num.map(x=>(x._1, x._2,xrk_wx_userorder_avg,fenzhi(x._2,xrk_wx_userorder_avg)))

/////////////////////////
val lines = sc.textFile(args(2))//wxcontentdb

//openid+time

val openid_time=lines.map(line => {val fileds = line.split("\t") ;( fileds(1)+"\t"+fileds(3))}).map((_,1)).reduceByKey(_ + _)

val _openid_time=openid_time.map(x=>(x._1.split("\t")(0))).map((_,1)).reduceByKey(_ + _).keyBy(top=>top._1)
//

val TotalArticle=lines.count()

val TotalClick= lines.map(line => {val fileds = line.split("\t") ;( fileds(4).toLong)}).reduce((a,b) => a+b)

val TotalReadNum= lines.map(line => {val fileds = line.split("\t") ;( fileds(5).toLong)}).reduce((a,b) => a+b)

val OpenArticle = lines.map(_.split("\t")(1)).map((_,1)).reduceByKey(_ + _)

val TotalOpenNum=OpenArticle.count()

val OpenClick=lines.map(line => {val fileds = line.split("\t") ;( fileds(1).toString(),fileds(4).toLong)}).reduceByKey(_ + _)
val OpenReadNum=lines.map(line => {val fileds = line.split("\t") ;( fileds(1).toString(),fileds(5).toLong)}).reduceByKey(_ + _)

//val txt= OpenArticle.map(x=>(x._2, x._1)).sortByKey(true).map(x=>(x._2,x._1))
val _OpenClick=OpenClick.keyBy(top=>top._1)
val _OpenReadNum=OpenReadNum.keyBy(top=>top._1)

val list= OpenArticle.keyBy(top=>top._1).join(_OpenClick).join(_OpenReadNum).join(_openid_time).map(f => (f._1, f._2._1._1._1._2, f._2._1._1._2._2, f._2._1._2._2, f._2._2._2))

val AvgClick=TotalClick/TotalOpenNum
val AvgReadNum=TotalReadNum/TotalOpenNum

// val txt=list.map(f =>(f._1,f._2,f._3,f._4,f._5,TotalArticle,TotalOpenNum,TotalClick,TotalReadNum));
val txt=list.map(f =>(f._1,fenzhi(f._3,AvgClick),fenzhi(f._4,AvgReadNum), fenzhi(f._2*10,8*14)/2.00+f._5*10.00/14.00/2.00 ))
//.keyBy(top=>top._2).sortByKey(true)
val _txt=txt.map(f =>{retfscoreqscoreSql((f._2+f._3)/2,f._4,f._1)})
val _openid_num_ex=openid_num_ex.map(f =>{rethscoreSql(f._4,f._1)})

// val _txt__openid_num_ex=_txt+"\n"+_openid_num_ex
// 文章数 点击 阅读 发文
//.map((_,TotalArticle,TotalClick,TotalReadNum))

//openid_num_ex.saveAsTextFile(args(4))
_openid_num_ex.saveAsTextFile(args(4))
_txt.saveAsTextFile(args(5))
sc.stop()

//val beginnow =new Date();
//val mbegindate = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") format beginnow

}
}

////////////////////////////////////////////////////////////提交///////////////////////////////////////////

/spark-1.0.2/bin/spark-submit  --class WordCount  spark-wordcount-in-scala.jar    spark://192.168.16.119:7077  SparkSubmit_Demo    /user/root/wxcontentdb/part-m-00000 /user/root/xrk_wx_userorder/part-m-00000    outtxt1 outtxt2  –num-workers 1 –master-memory 2g –worker-memory 2g

第一个spark+scala程序的更多相关文章

  1. [大数据从入门到放弃系列教程]第一个spark分析程序

    [大数据从入门到放弃系列教程]第一个spark分析程序 原文链接:http://www.cnblogs.com/blog5277/p/8580007.html 原文作者:博客园--曲高终和寡 **** ...

  2. 一个 Spark 应用程序的完整执行流程

    一个 Spark 应用程序的完整执行流程 1.编写 Spark Application 应用程序 2.打 jar 包,通过 spark-submit 提交执行 3.SparkSubmit 提交执行 4 ...

  3. intellij 调试spark scala 程序 报错

    spark用的是cdh spark-2.0.1 package main.scala import org.apache.spark.rdd.RDD import org.apache.spark.{ ...

  4. Spark集群 + Akka + Kafka + Scala 开发(2) : 开发一个Spark应用

    前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境,我们已经部署好了一个Spark的开发环境. 本文的目标是写一个Spark应用,并可以在集群中测试. ...

  5. 利用Scala语言开发Spark应用程序

    Spark内核是由Scala语言开发的,因此使用Scala语言开发Spark应用程序是自然而然的事情.如果你对Scala语言还不太熟悉,可 以阅读网络教程A Scala Tutorial for Ja ...

  6. Spark官方文档——本地编写并运行scala程序

    快速开始 本文将介绍如何用scala.java.python编写一个spark单击模式的程序. 首先你只需要在一台机器上成功建造Spark:做法: 进入Spark的根目录,输入命令:$ sbt/sbt ...

  7. 第一个Spark程序

    1.Java下Spark开发环境搭建(from http://www.cnblogs.com/eczhou/p/5216918.html) 1.1.jdk安装 安装oracle下的jdk,我安装的是j ...

  8. Spark认识&环境搭建&运行第一个Spark程序

    摘要:Spark作为新一代大数据计算引擎,因为内存计算的特性,具有比hadoop更快的计算速度.这里总结下对Spark的认识.虚拟机Spark安装.Spark开发环境搭建及编写第一个scala程序.运 ...

  9. IDEA搭建scala开发环境开发spark应用程序

    通过IDEA搭建scala开发环境开发spark应用程序   一.idea社区版安装scala插件 因为idea默认不支持scala开发环境,所以当需要使用idea搭建scala开发环境时,首先需要安 ...

随机推荐

  1. RabbitMQ 3.6.1集群搭建

    MQ的集群首先需要搭建erlang集群1.把cat /root/.erlang.cookie 内容改为一致 cat /root/.erlang.cookie 2.更改cookie文件权限 chmod ...

  2. 取代netcat

    前言 众所周知,netcat是网络界的瑞士军刀,它的主要作用是:提供连接其他终端的方法,可以上传文件,反弹shell等等各种利于别人控制你电脑的操作.所以聪明的系统管理员会将它从系统中移除,这样当别人 ...

  3. SSM框架中常用的注解

    @Controller:在SpringMVC 中,控制器Controller 负责处理由DispatcherServlet 分发的请求,它把用户请求的数据经过业务处理层处理之后封装成一个Model , ...

  4. SimpleDateFormat使用和线程安全问题

    SimpleDateFormat 是一个以国别敏感的方式格式化和分析数据的具体类. 它允许格式化 (date -> text).语法分析 (text -> date)和标准化. Simpl ...

  5. java.util.Properties类 学习笔记

    学习目标:   1.认识properties文件,理解其含义,会正确创建properties文件. 2.会使用java.util.Properties类来操作properties文件. 3.掌握相对路 ...

  6. Unity 遮罩 点击panel以外的位置,panel关闭

    public Class Panel_ATMRechage : IPanel{ private Dictionary<string,UISprite>mSprites; } protect ...

  7. .net Core1.0 邮件发送

    今天一天早,公司需要将之前的.net Core项目增加一个预处理机制,就是当程序出现异常后给我们的开发人员发送邮件,因为今天写些关于.netCore上发送邮件. 根据查阅资料发现在目前的Core1.0 ...

  8. 浅谈java发射机制

    目录 什么是反射 初探 初始化 类 构造函数 属性 方法 总结 思考 什么是反射 JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意 ...

  9. Java IO流之缓冲流

    一.缓冲流简介 二.BufferedInputStream 三.其他三种缓冲流

  10. css块级元素居中

    <!DOCTYPE html> <html> <head> <title>index</title> </head> <b ...