New convocation of The Fool Land's Parliament consists of N delegates. According to the present regulation delegates should be divided into disjoint groups of different sizes and every day each group has to send one delegate to the conciliatory committee. The composition of the conciliatory committee should be different each day. The Parliament works only while this can be accomplished. 
You are to write a program that will determine how many delegates should contain each group in order for Parliament to work as long as possible. 

Input

The input file contains a single integer N (5<=N<=1000 ).

Output

Write to the output file the sizes of groups that allow the Parliament to work for the maximal possible time. These sizes should be printed on a single line in ascending order and should be separated by spaces.

Sample Input

7

Sample Output

3 4

这道题就是将n分成若干个不同的正整数的和,使其相乘最大,求分成哪几个数。

题解:就是将n分成2,3,......,直到不能分为止,然后怎么办呢,剩下的就倒着分配回去,这样乘积最大。

转一下:http://www.cnblogs.com/Missa/archive/2012/10/11/2719943.html

给你一个n问求使得 a1+a2+..ak==n时 a1*a2*..ak最大。。a1 a2.....不相等。(没看懂题目意思。。)

以下转自http://blog.himdd.com/?p=1918

思路:将一个数分成2份,如何分,使得这两个数乘积最大。答案是将这个数平分,证明是求x*(n-x)的最大值。基于这种思路,将N分成乘积最大的不相等的多份,应使得其中每份的数相差尽量少,即差值为1的等差数列为最理想状态。构造了一个等差数列以后,再根据剩余值对整个数列的值进行调整。使得相邻元素差值达到最小。这里注意,等差数列的构造应以2为首项,1为首项的话,对乘积没影响。。。
(以下证明是从网上得来的)
由题意知,这种分解的数目是有限的,因此,最大积存在;
假设最大积的分解为:
N=a1+a2+a3+…+a[t-2]+a[t-1]+a[t] (t是分解的数目,a1<a2<a3<...<a[t-2]<a[t-1]<a[t])
 下面是该数列的性质及其证明:
1)a1>1;
如果a1=1,则a1和a[t]可以由a[t]+a1=a[t]+1来替代,从而得到更大的积;

2)对于所有的i,有a[i+1]-a[i]<= 2;
如果存在i使得a[i+1]-a[i]>=3,则a[i]和a[i+1]可以替换为a[i]+1,a[i+1]-1,从而使乘积更大;

3)最多只存在一个i使得a[i+1]-a[i]=2;
如果i< j且a[i+1]-a[i]=2、a[j+1]-a[j]=2,则a[i],a[j+1]可以替换为a[i]+1,a[j+1]-1,从而使得乘积更大;

4)a1<=3;
如果a1>=4,则a1和a2可以替换为2,a1-1,a2-1,从而使得乘积更大;

5)如果a1=3且存在i满足a[i+1]-a[i]=2,则i一定等于t-1;
如果i<t-1,则a[i+2]可以替换为2,a[i+2]-2,从而使得乘积更大;< p="">

将上面5条性质综合一下,得到该数列满足:
1)1< a1< 4
2)a[i+1]-a[i] <=2(该序列按升序排序)
3)a[i+1]-a[i]=2的情况最多只有一个

因此,我们得到最大的乘积的做法就是求出从2开始的最大连续(由上面总结的性质2和3可知)自然数列之和A,使得A的值不超过N,具体分析如下:
对输入的N,找到k满足:
A=2+3+4+...+(k-1)+k <= N < A+(k+1) = B
假设N=A+p(0<=p< k+1),即A+p是最大积的数列
1)p=0,则最大积是A;
2)1<=p<=k-1,则最大积是B-{k+1-p},即从数列的最大项i开始,从大到小依次每项加1,知道p=0为止;
3)p=k,则最大积是A+p=A+k=A-{2}+{k+2};( =3+4+...+k+( k+2) );

 #include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; int n;
int a[],top=; int main()
{
scanf("%d",&n);
int st=;
while (n>=st)
{
a[++top]=st;
n-=st;
st++;
}
for (int i=top;i>=top-n+;i--)
a[i]++;
if (n>top) a[top]++;
for (int i=;i<=top-;i++)
printf("%d ",a[i]);
printf("%d\n",a[top]);
}

POJ1032 Parliament(数论)的更多相关文章

  1. POJ1032 Parliament

    题目来源:http://poj.org/problem?id=1032 题目大意:给定一个正整数N(5<=N<=1000),将N拆为若干个不同的数使得它们的乘积最大(找到一组互不相等,和为 ...

  2. Codeforces Round #382 Div. 2【数论】

    C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...

  3. NOIP2014 uoj20解方程 数论(同余)

    又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...

  4. 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)

    ~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...

  5. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  6. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  7. bzoj2219: 数论之神

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  8. hdu5072 Coprime (2014鞍山区域赛C题)(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出N个数,求有多少个三元组,满足三个数全部两两互质或全部两两不互质. 题解: http://dty ...

  9. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

随机推荐

  1. sed武功心法(info sed翻译+注解)

    本文中的提到GNU扩展时,表示该功能是GNU为sed提供的(即GNU版本的sed才有该功能),一般此时都会说明:如果要写具有可移植性的脚本,应尽量避免在脚本中使用该选项. 本文中的正则表达式几乎和gr ...

  2. POI 自用API

    poi包下载 API 使用POI生成Excel,大家都是赞个.可是狐狸觉得毕竟不是微软的产品,使用没有C#语言的好用,方法还是存在极限的. 下面总结狐狸自己用过的方法: import org.apac ...

  3. Spring Boot-------项目搭建及注解

    Spring Boot Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需 ...

  4. EF实例创建问题

    场景:CodeFirst 情况下,在控制器新建一个EF数据库对象,以便运行时进行表的初始化创建 Private DemoContext db=new DemoContext (): 问题:什么时候释放 ...

  5. 【DDD】领域驱动设计实践 —— 限界上下文识别

    本文从战略层面街上DDD中关于限界上下文的相关知识,并以ECO系统为例子,介绍如何识别上下文.限界上下文(Bounded Context)定义了每个模型的应用范围,在每个Bounded Context ...

  6. Sqlite数据库添加数据以及查询数据方法

    只是两个添加查询方法而已,怕时间长不用忘了

  7. JS学习一

    js中的变量输出   [使用JS的三种方式] 1. 在HTML标签中,直接内嵌JS(并不提倡使用): <button onclick="alert('你真点啊!')"> ...

  8. Node.js中Async详解:流程控制

    安装 npm install async --save 地址 https://github.com/caolan/async Async的内容主要分为三部分 流程控制: 简化九种常见的流程的处理 集合 ...

  9. 【Alpha阶段】第四次scrum meeting

    一.会议照片 二.会议内容 姓名 学号 负责模块 昨日任务完成度 今日任务 杨爱清 099 界面设计和交互功能 完成 百度合适的背景图片 杨立鑫 100 数据库搭建和其他 完成 开始编辑数据库 林 钊 ...

  10. 201521123121 《JAVA程序设计》第8周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 1.2 选做:收集你认为有用的代码片段 所有泛型方法声明都有一个类型参数声明部分(由尖括号分隔),该类型参数声 ...