学习笔记TF018:词向量、维基百科语料库训练词向量模型
词向量嵌入需要高效率处理大规模文本语料库。word2vec。简单方式,词送入独热编码(one-hot encoding)学习系统,长度为词汇表长度的向量,词语对应位置元素为1,其余元素为0。向量维数很高,无法刻画不同词语的语义关联。共生关系(co-occurrence)表示单词,解决语义关联,遍历大规模文本语料库,统计每个单词一定距离范围内的周围词汇,用附近词汇规范化数量表示每个词语。类似语境中词语语义相似。用PCA或类似方法降维出现向量(occurrence vector),得到更稠密表示。性能好,追踪所有词汇共生矩阵,宽度、高度为词汇表长度。2013年,Mikolov、Tomas等提出上下文计算词表示方法,《Efficient estimation of word representations in vector space》(arXiv preprint arXiv:1301.3781(2013))。skip-gram模型,从随机表示开始,依据当前词语预测上下文词语简单分类器,误差通过分类器权值和词表示传播,对两者调整减少预测误差。大规模语料库训练模型表示赂量逼近压缩后共生向量。
数据集, 英文维基百科转储文件包含所有页面完整修订历史,当前页面版本100GB,https://dumps.wikimedia.org/backup-index.html。
下载转储文件,提取页面词语。统计词语出现次数,构建常见词汇表。用词汇表对提取页面编码。逐行读取文件,结果立即写入磁盘。在不同步骤间保存检查点,避免程序崩溃重来。
__iter__遍历词语索引列表页面。encode获取字符串词语词汇索引。decode依据词汇索引返回字符串词语。_read_pages从维基百科转储文件(压缩XML)提取单词,保存到页面文件,每个页面一行空格分隔的单词。bz2模块open函数读取文件。中间结果压缩处理。正则表达式捕捉任意连续字母序列或单独特殊字母。_build_vocabulary统计页面文件单词数,出现频率高词语写入文件。独热编码需要词汇表。词汇表索引编码。移除拼写错误、极不常见词语,词汇表只包含vocabulary_size - 1个最常见词语。所有不在词汇表词语<unk>标记,未出现单词词向量。
动态形成训练样本,组织到大批数据,分类器不占大量内存。skip-gram模型预测当前词语的上下文词语。遍历文本,当前词语数据,周围词语目标,创建训练样本。上下文尺寸R,每个单词生成2R样本,当前词左右各R个词。语义上下文,距离近重要,尽量少创建远上下文词语训练样本,范围[1,D=10]随机选择词上下文尺寸。依据skip-gram模型形成训练对。Numpy数组生成数值流批数据。
初始,单词表示为随机向量。分类器根据中层表示预测上下文单词当前表示。传播误差,微调权值、输入单词表示。MomentumOptimizer 模型优化,智能不足,效率高。
分类器是模型核心。噪声对比估计损失(noisecontrastive estimation loss)性能优异。softmax分类器建模。tf.nn.nce_loss 新随机向量负样本(对比样本),近似softmax分类器。
训练模型结束,最终词向量写入文件。维基百科语料库子集,普通CPU训练5小时,得到NumPy数组嵌入表示。完整语料库: https://dumps.wikimedia.org/enwiki/20160501/enwiki-20160501-pages-meta-current.xml.bz2 。AttrDict类等价Python dict,键可属性访问。
import bz2
import collections
import os
import re
from lxml import etree
from helpers import download
class Wikipedia:
TOKEN_REGEX = re.compile(r'[A-Za-z]+|[!?.:,()]')
def __init__(self, url, cache_dir, vocabulary_size=10000):
self._cache_dir = os.path.expanduser(cache_dir)
self._pages_path = os.path.join(self._cache_dir, 'pages.bz2')
self._vocabulary_path = os.path.join(self._cache_dir, 'vocabulary.bz2')
if not os.path.isfile(self._pages_path):
print('Read pages')
self._read_pages(url)
if not os.path.isfile(self._vocabulary_path):
print('Build vocabulary')
self._build_vocabulary(vocabulary_size)
with bz2.open(self._vocabulary_path, 'rt') as vocabulary:
print('Read vocabulary')
self._vocabulary = [x.strip() for x in vocabulary]
self._indices = {x: i for i, x in enumerate(self._vocabulary)}
def __iter__(self):
with bz2.open(self._pages_path, 'rt') as pages:
for page in pages:
words = page.strip().split()
words = [self.encode(x) for x in words]
yield words
@property
def vocabulary_size(self):
return len(self._vocabulary)
def encode(self, word):
return self._indices.get(word, 0)
def decode(self, index):
return self._vocabulary[index]
def _read_pages(self, url):
wikipedia_path = download(url, self._cache_dir)
with bz2.open(wikipedia_path) as wikipedia, \
bz2.open(self._pages_path, 'wt') as pages:
for _, element in etree.iterparse(wikipedia, tag='{*}page'):
if element.find('./{*}redirect') is not None:
continue
page = element.findtext('./{*}revision/{*}text')
words = self._tokenize(page)
pages.write(' '.join(words) + '\n')
element.clear()
def _build_vocabulary(self, vocabulary_size):
counter = collections.Counter()
with bz2.open(self._pages_path, 'rt') as pages:
for page in pages:
words = page.strip().split()
counter.update(words)
common = ['<unk>'] + counter.most_common(vocabulary_size - 1)
common = [x[0] for x in common]
with bz2.open(self._vocabulary_path, 'wt') as vocabulary:
for word in common:
vocabulary.write(word + '\n')
@classmethod
def _tokenize(cls, page):
words = cls.TOKEN_REGEX.findall(page)
words = [x.lower() for x in words]
return words
import tensorflow as tf
import numpy as np
from helpers import lazy_property
class EmbeddingModel:
def __init__(self, data, target, params):
self.data = data
self.target = target
self.params = params
self.embeddings
self.cost
self.optimize
@lazy_property
def embeddings(self):
initial = tf.random_uniform(
[self.params.vocabulary_size, self.params.embedding_size],
-1.0, 1.0)
return tf.Variable(initial)
@lazy_property
def optimize(self):
optimizer = tf.train.MomentumOptimizer(
self.params.learning_rate, self.params.momentum)
return optimizer.minimize(self.cost)
@lazy_property
def cost(self):
embedded = tf.nn.embedding_lookup(self.embeddings, self.data)
weight = tf.Variable(tf.truncated_normal(
[self.params.vocabulary_size, self.params.embedding_size],
stddev=1.0 / self.params.embedding_size ** 0.5))
bias = tf.Variable(tf.zeros([self.params.vocabulary_size]))
target = tf.expand_dims(self.target, 1)
return tf.reduce_mean(tf.nn.nce_loss(
weight, bias, embedded, target,
self.params.contrastive_examples,
self.params.vocabulary_size))
import collections
import tensorflow as tf
import numpy as np
from batched import batched
from EmbeddingModel import EmbeddingModel
from skipgrams import skipgrams
from Wikipedia import Wikipedia
from helpers import AttrDict
WIKI_DOWNLOAD_DIR = './wikipedia'
params = AttrDict(
vocabulary_size=10000,
max_context=10,
embedding_size=200,
contrastive_examples=100,
learning_rate=0.5,
momentum=0.5,
batch_size=1000,
)
data = tf.placeholder(tf.int32, [None])
target = tf.placeholder(tf.int32, [None])
model = EmbeddingModel(data, target, params)
corpus = Wikipedia(
'https://dumps.wikimedia.org/enwiki/20160501/'
'enwiki-20160501-pages-meta-current1.xml-p000000010p000030303.bz2',
WIKI_DOWNLOAD_DIR,
params.vocabulary_size)
examples = skipgrams(corpus, params.max_context)
batches = batched(examples, params.batch_size)
sess = tf.Session()
sess.run(tf.initialize_all_variables())
average = collections.deque(maxlen=100)
for index, batch in enumerate(batches):
feed_dict = {data: batch[0], target: batch[1]}
cost, _ = sess.run([model.cost, model.optimize], feed_dict)
average.append(cost)
print('{}: {:5.1f}'.format(index + 1, sum(average) / len(average)))
if index > 100000:
break
embeddings = sess.run(model.embeddings)
np.save(WIKI_DOWNLOAD_DIR + '/embeddings.npy', embeddings)
参考资料:
《面向机器智能的TensorFlow实践》
欢迎加我微信交流:qingxingfengzi
我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz
学习笔记TF018:词向量、维基百科语料库训练词向量模型的更多相关文章
- 广师大学习笔记之文本统计(jieba库好玩的词云)
1.jieba库,介绍如下: (1) jieba 库的分词原理是利用一个中文词库,将待分词的内容与分词词库进行比对,通过图结构和动态规划方法找到最大概率的词组:除此之外,jieba 库还提供了增加自定 ...
- 学习笔记之TCP/IP协议分层与OSI參考模型
1.协议的分层 ISO在制定标准化OSI之前,对网络体系结构相关的问题进行了充分的讨论, 终于提出了作为通信协议设计指标的OSI參考模型.这一模型将通信协议中必要 的功能分成了7层.通过这些 ...
- 学习笔记(22)- plato-训练端到端的模型
原始文档 Train an end-to-end model To get started we can train a very simple model using Ludwig (feel fr ...
- tensorflow学习笔记(三十四):Saver(保存与加载模型)
Savertensorflow 中的 Saver 对象是用于 参数保存和恢复的.如何使用呢? 这里介绍了一些基本的用法. 官网中给出了这么一个例子: v1 = tf.Variable(..., nam ...
- 开源共享一个训练好的中文词向量(语料是维基百科的内容,大概1G多一点)
使用gensim的word2vec训练了一个词向量. 语料是1G多的维基百科,感觉词向量的质量还不错,共享出来,希望对大家有用. 下载地址是: http://pan.baidu.com/s/1boPm ...
- 基于51单片机IIC通信的PCF8591学习笔记
引言 PCF8591 是单电源,低功耗8 位CMOS 数据采集器件,具有4 个模拟输入.一个输出和一个串行I2C 总线接口.3 个地址引脚A0.A1 和A2 用于编程硬件地址,允许将最多8 个器件连接 ...
- thinkphp学习笔记7—多层MVC
原文:thinkphp学习笔记7-多层MVC ThinkPHP支持多层设计. 1.模型层Model 使用多层目录结构和命名规范来设计多层的model,例如在项目设计中如果需要区分数据层,逻辑层,服务层 ...
- AKKA学习笔记
AKKA学习笔记总结 01. AKKA 1. 介绍: Akka基于Actor模型,提供了一个用于构建可扩展的(Scalable).弹性的(Resilient).快速响应的(Responsive)应用程 ...
- DNN模型训练词向量原理
转自:https://blog.csdn.net/fendouaini/article/details/79821852 1 词向量 在NLP里,最细的粒度是词语,由词语再组成句子,段落,文章.所以处 ...
随机推荐
- reids数据类型
今天第一次开通,写的不好,请谅解 redis并不是简单的key-value存储,实际上它是一个数据结构服务器,支持不同类型的值,也就是说,我们不仅仅把字符串当作键所指向的值, 如下这些数据 ...
- 关于使用ModelSim中编写testbench模板问题
对于初学者来说写Testbench测试文件还是比较困难的,但Modelsim和quartus ii都提供了模板,下面就如何使用Modelsim提供的模板进行操作. Modelsim提供了很多Testb ...
- 用vuejs仿网易云音乐(实现听歌以及搜索功能)
前言 前端时间学了vue,一开始看了vue1.0,后来实在觉得技术总得实践,就直接上手vue2.0.然后花了将近一周时间做了一个网易云音乐的小项目.一开始觉得项目比较小,没必要用vuex所以就没有使用 ...
- (练习题)利用构造器函数实现三个小实例——不使用String()与Array()构造器和Math对象,不使用内建的方法的方法和属性。
1)在String()构造器不存在的情况下自定义一个myString()构造器函数.由于String()不存在,因此您在写构造器函数时不能使用任何属于内建String对象的方法和属性.并让你所创建的对 ...
- 比较Java中几个常用集合添加元素的效率
初始化需要进行比较的集合,统一增加10万个元素,获取整个过程的执行时间. 1.List集合增加元素 private static void testList() { List<Integer&g ...
- bzoj1798 [Ahoi2009]维护序列
Description 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2 ...
- mina.net 梳理
LZ最近离职,闲着也是闲着,打算梳理下 公司做的是电商,CTO打算把2.0系统用java 语言开发,LZ目前不打算做java,所以 选择离职.离职前,在公司负责的最后一个项目 供应链系统. 系统分为 ...
- day01课程回顾,数据类型
Day01 Python的分类 Cpython:代码àc字节码->机器码 一行一行的编译执行 Pypy: 代码àc字节码->机器码 全部转换完再执行 其他python 代码- ...
- Vue 项目实战系列 (一)
最近一直在学习Vue,基本的文档看完后就需要进行具体的项目进行练手了,本系列文章主要是将我学习过程记录下来,和大家一起学习交流. 我在git上找到了一个淘票票的Vue项目,项目地址: https:// ...
- javascript中的apply,call,bind详解
apply.call 在 javascript 中,call 和 apply 都是为了改变某个函数运行时的上下文(context)而存在的,换句话说,就是为了改变函数体内部 this 的指向. Jav ...