You can Solve a Geometry Problem too(判断两线段是否相交)
You can Solve a Geometry Problem too |
| Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
| Total Submission(s): 199 Accepted Submission(s): 132 |
|
Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :) Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.
Note: You can assume that two segments would not intersect at more than one point. |
|
Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. A test case starting with 0 terminates the input and this test case is not to be processed.
|
|
Output
For each case, print the number of intersections, and one line one case.
|
|
Sample Input
2 |
|
Sample Output
1 |
|
Author
lcy
|
/*
计算几何求所给线段的交点数量 */
#include<bits/stdc++.h>
using namespace std;
struct Point{//点
double x,y;
Point(){}
Point(int a,int b){
x=a;
y=b;
}
void input(){
scanf("%lf%lf",&x,&y);
}
};
struct Line{//线段
Point a,b;
Line(){}
Line(Point x,Point y){
a=x;
b=y;
}
void input(){
a.input();
b.input();
}
};
bool judge(Point &a,Point &b,Point &c,Point &d)
{
if(!(min(a.x,b.x)<=max(c.x,d.x) && min(c.y,d.y)<=max(a.y,b.y)&&
min(c.x,d.x)<=max(a.x,b.x) && min(a.y,b.y)<=max(c.y,d.y)))//这里的确如此,这一步是判定两矩形是否相交
//特别要注意一个矩形含于另一个矩形之内的情况
return false;
double u,v,w,z;//分别记录两个向量
u=(c.x-a.x)*(b.y-a.y)-(b.x-a.x)*(c.y-a.y);
v=(d.x-a.x)*(b.y-a.y)-(b.x-a.x)*(d.y-a.y);
w=(a.x-c.x)*(d.y-c.y)-(d.x-c.x)*(a.y-c.y);
z=(b.x-c.x)*(d.y-c.y)-(d.x-c.x)*(b.y-c.y);
return (u*v<=0.00000001 && w*z<=0.00000001);
}
vector<Line>v;//用来存放线段
int n;
Line a;
void init(){
v.clear();
}
int main(){
//freopen("in.txt","r",stdin);
while(scanf("%d",&n)!=EOF&&n){
init();
for(int i=;i<n;i++){
a.input();
v.push_back(a);
}//将线段存入
int cur=;
for(int i=;i<v.size();i++){
for(int j=i+;j<v.size();j++)
if(judge(v[i].a,v[i].b,v[j].a,v[j].b))
cur++;
}
printf("%d\n",cur);
}
return ;
}
You can Solve a Geometry Problem too(判断两线段是否相交)的更多相关文章
- HDU 1086You can Solve a Geometry Problem too(判断两条选段是否有交点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1086 判断两条线段是否有交点,我用的是跨立实验法: 两条线段分别是A1到B1,A2到B2,很显然,如果 ...
- HDU1086You can Solve a Geometry Problem too(判断线段相交)
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- NYOJ 1016 判断两线段是否相交
#include<cstdio> #include<cmath> #include<iostream> #include<algorithm> #inc ...
- Pick-up sticks--poj2653(判断两线段是否相交)
http://poj.org/problem?id=2653 题目大意:有n根各种长度的棍 一同洒在地上 求在最上面的棍子有那几个 分析: 我刚开始想倒着遍历 因为n是100000 想着会 ...
- You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...
- hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- HDU1086 You can Solve a Geometry Problem too(计算几何)
You can Solve a Geometry Problem too Time Limit: 2000/1000 M ...
- hdu 1086 You can Solve a Geometry Problem too [线段相交]
题目:给出一些线段,判断有几个交点. 问题:如何判断两条线段是否相交? 向量叉乘(行列式计算):向量a(x1,y1),向量b(x2,y2): 首先我们要明白一个定理:向量a×向量b(×为向量叉乘),若 ...
- HDU 1086 You can Solve a Geometry Problem too( 判断线段是否相交 水题 )
链接:传送门 题意:给出 n 个线段找到交点个数 思路:数据量小,直接暴力判断所有线段是否相交 /*************************************************** ...
随机推荐
- Angular2组件与指令的小实践
如果说模块系统是Angular2的灵魂,那其组件体系就是其躯体,在模块的支持下渲染出所有用户直接看得见的东西,一个项目最表层的东西就是组件呈现的视图.而除了直接看的见的躯体之外,一个完整的" ...
- [js高手之路] html5 canvas系列教程 - 像素操作(反色,黑白,亮度,复古,蒙版,透明)
接着上文[js高手之路] html5 canvas系列教程 - 状态详解(save与restore),相信大家都应该玩过美颜功能,而我们今天要讲的就是canvas强大的像素处理能力,通过像素处理,实现 ...
- Linux 安装Anaconda 4.4.0
安装步骤参考了官网的说明:https://docs.anaconda.com/anaconda/install/linux.html 具体步骤如下: 1.在官网下载地址 https://www.an ...
- hive自定义UDF
udf udaf udtf 使用方式 hiverc文件 1.jar包放到安装日录下或者指定目录下 2.${HIVE_HOME}/bin目录下有个.hiverc文件,它是隐藏文件. 3.把初始化语句加载 ...
- android-蓝牙通信
一:简介 由于项目曾经想用蓝牙通信,但由于蓝牙传输速度比较慢,最终还是没有使用蓝牙,不过还是在空闲之余研究了蓝牙通信,鉴于目前网上蓝牙这块教程并不多,尤其是从蓝牙扫描,蓝牙配对,蓝牙通信等完整的教程更 ...
- 关于 HashMap 随笔
hashMap 的一些认识: 基于哈希表的Map接口的非同步实现,定义了键映射到值的规则 此实现提供所有可选的映射操作,并允许使用null值和null键 根据hash算法,确定key-value的存贮 ...
- python之路第五篇之模块和加密算法(进阶篇:续)
模块 Python中,如果要引用一些内置的函数,该怎么处理呢?在Python中有一个概念叫做模块(module) 简单地说,模块就是一个保存了Python代码的文件. 模块分类: 1)内置模块 2)自 ...
- Python自学笔记-递归函数(来自廖雪峰的官网Python3)
感觉廖雪峰的官网http://www.liaoxuefeng.com/里面的教程不错,所以学习一下,把需要复习的摘抄一下. 以下内容主要为了自己复习用,详细内容请登录廖雪峰的官网查看. 递归函数 ...
- VLAN的三种类型及三种属性
- 将网页封装成苹果APP的牛逼方法,无需发布到appstore,无需越狱即可安装
很多小伙伴都在开发自己的app, 有的实现实现比较简单,就是一个h5页面,然后想要打包成app发布出去. 这个想法很单纯 打包生成个app这个是很简单的,网上一堆打包工具,分分钟可以完成 但是... ...