OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks
概
通常的sliding windows需要大量的计算量: 首先我们需要框出一个区域, 再将该区域进行判断, 当区域(windows)的数量很多的时候, 这么做是非常耗时的.
但是本文作者发现, 通过卷积, 可以将所有的区域一次性计算, 使得大量重复计算能够节省下来. 个人觉得还是非常有意思的.
主要内容

如上图所示, 第一行展示了对一个普通图片进行判断的过程:
- input: \(14 \times 14 \times *\), 经过\(5 \times 5\)的卷积核(stride=1, padding=0), 得到:
- \(10 \times 10 \times *\)的mappings, 再经过\(2 \times 2\)的pooling (stride=2, padding=0), 得到:
- \(5 \times 5 \times *\)的mappings, 到此为特征提取阶段;
- 接下来, 是分类器部分, 实际上, 原本是全连接层部分, 我们首先以全连接层的角度过一遍, 令\(d_1=5 \times 5 \times *\):
- 通过\(W \in \mathbb{R}^{d_2 \times d_1}\) 将特征映射为\(d_2\)的向量;
- 再通过\(W' \in \mathbb{R}^{C \times d_2}\) 将特征映射为\(C\)的向量(C表示类别数目);
- 既然全连接层是特殊的卷积, 4相当于
- \(d_1\)个\(5 \times 5\)的卷积作用于特征, 5相当于
- \(d_2\)个\(1 \times 1\)的卷积, 6相当于
- \(C\)个\(1 \times 1\)的卷积.
再来看第二行, 其输入为\(16 \times 16\)大小的图片, 输出是\(2 \times 2 \times C\), 而且蓝色部分之间是相互对应的. 设想, 我们将\(16 \times 16\)的图片通过sliding windows (stride=2)可以划分出四幅图片, 而这四个图片经过网络所得到的logits正好是最后输出的\(2\times 2\)中所对应的位置, 这意味着我们一次性计算了所有的windows, 但是计算量却并没有太多增加.
那么, 相应的windows是怎么划分的呢?
倘若网络每一层的核的stride为\(s_1, s_2, \cdots, s_k\), 那么windows之间的stride应该为
\]
注: stride是固定的, 但是图片的大小不一定固定, 像ResNet, 由于全连接层前有一个average pooling的操作, 故我们可以传入大小不定的图片进去.
问: 但是有些卷积核还有padding的操作, 这个该如何理解呢?(小误差?)
OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks的更多相关文章
- 深度学习论文翻译解析(十一):OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
		论文标题:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 标题翻译: ... 
- 对 OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks  一文的理解
		一点最重要的学习方法: 当你读一篇论文读不懂时,如果又读了两遍还是懵懵懂懂时怎么办???方法就是别自己死磕了,去百度一下,如果是很好的论文,大多数肯定已经有人读过并作为笔记了的,比如我现在就把我读过 ... 
- 论文笔记:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
		2014 ICLR 纽约大学 LeCun团队 Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann ... 
- 论文笔记:《OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks  DeepLearning 》
		一.Abstract综述 训练出一个CNN可以同时实现分类,定位和检测..,三个任务共用同一个CNN网络,只是在pool5之后有所不同 二.分类 这里CNN的结构是对ALEXNET做了一些改进,具体的 ... 
- VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION 这篇论文
		由Andrew Zisserman 教授主导的 VGG 的 ILSVRC 的大赛中的卷积神经网络取得了很好的成绩,这篇文章详细说明了网络相关事宜. 文章主要干了点什么事呢?它就是在在用卷积神经网络下, ... 
- VGGNet论文翻译-Very Deep Convolutional Networks for Large-Scale Image Recognition
		Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zi ... 
- 中文版 R-FCN: Object Detection via Region-based Fully Convolutional Networks
		R-FCN: Object Detection via Region-based Fully Convolutional Networks 摘要 我们提出了基于区域的全卷积网络,以实现准确和高效的目标 ... 
- Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)
		摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有 ... 
- 【Semantic segmentation】Fully Convolutional Networks for Semantic Segmentation 论文解析
		目录 0. 论文链接 1. 概述 2. Adapting classifiers for dense prediction 3. upsampling 3.1 Shift-and-stitch 3.2 ... 
随机推荐
- 巩固java第六天
			巩固内容: HTML 空元素 没有内容的 HTML 元素被称为空元素.空元素是在开始标签中关闭的. <br> 就是没有关闭标签的空元素(<br> 标签定义换行). 在 XHTM ... 
- Java 监控基础 - 使用 JMX 监控和管理 Java 程序
			点赞再看,动力无限.Hello world : ) 微信搜「程序猿阿朗 」. 本文 Github.com/niumoo/JavaNotes 和 未读代码网站 已经收录,有很多知识点和系列文章. 此篇文 ... 
- FTP 文件传输服务
			昨晚心血来潮,尝试用python写了一个ftp文件传输服务,可以接收指令,从远程ftp服务器同步指定目录数据,最后没用上,开源出来. https://github.com/jadepeng/ftp_t ... 
- 使用Rapidxml重建xml树
			需求 : 重建一棵xml树, 在重建过程中对原来的标签进行一定的修改. 具体修改部分就不给出了, 这里只提供重建部分的代码 code : /****************************** ... 
- 【分布式】Zookeeper伪集群安装部署
			zookeeper:伪集群安装部署 只有一台linux主机,但却想要模拟搭建一套zookeeper集群的环境.可以使用伪集群模式来搭建.伪集群模式本质上就是在一个linux操作系统里面启动多个zook ... 
- Dos窗口下中文乱码问题
			最近用Datax工具进行数据同步时,在DOS窗口下出现了中文乱码问题,导致一些错误只能到Log中查看,在网上找了一些方法,记录使用成功的方法. Dos命令:chcp 通过cmd进入Dos命令窗口,执行 ... 
- 【Matlab】快速傅里叶变换/ FFT/ fftshift/ fftshift(fft(fftshift(s)))
			[自我理解] fft:可以指定点数的快速傅里叶变换 fftshift:将零频点移到频谱的中间 用法: Y=fftshift(X) Y=fftshift(X,dim) 描述:fftshift移动零频点到 ... 
- Flink Exactly-once 实现原理解析
			关注公众号:大数据技术派,回复"资料",领取1024G资料. 这一课时我们将讲解 Flink "精确一次"的语义实现原理,同时这也是面试的必考点. Flink ... 
- 跨平台调用之WebService
			一.简介 web service是一种跨编程语言和跨操作系统平台的远程调用技术,是基于网络的.分布式的模块化组件. 跨编程语言就是说服务器端程序采用 Java 编写,客户端程序则可以采用其他编程语言编 ... 
- thinkPHP的多语言支持如何配置和部署
			框架底层语言包位于:ThinkPHP/Lang/zh-cn.php 可以参考如何编写语言文件 第一步:项目目录下的配置文件中配置多语言支持的相关选项 以我的路径为例是Application\Commo ... 
