用Matlab求解微分方程
用Matlab求解微分方程
解微分方程有两种解,一种是解析解,一种是数值解,这两种分别对应不同的解法
解析解
利用dsolve函数进行求解
syms x;
s = dsolve('eq1,eq2,...', ’cond1,cond2,...', 'v');
%eq:微分方程
%cond:条件
%v:独立变量
%形如:方程:y'= f(t,y),初值:y(t0) = y0
1.求解析解

dsolve('Du = 1+ u^2','t')
ans =
tan(C2 + t)
1i
-1i
求
的解析解
s = dsolve('D2y=3*y+2*x','x');
% D2y用以表示y的二阶导数,默认是以t为自变量的,所以最好指明自变量为x.
syms y(x);
s = dsolve([diff(y,x,2) == 3*y+2*x], [y(0) == 5])
% diff内依次是函数、自变量、微分阶数,方程用==表示相等而不是赋值
2.初值问题
求初值问题
s = dsolve('Dy = y - 2*t / y','y(0) =1');
3.边界问题
求边界问题
s = dsolve('x*D2y - 3*Dy =x^2','y(1)=0','y(5) = 0','x');
4.高阶方程
求解方程
s=dsolve('D2y =cos(2*x) - y','y(0) =1','Dy(0) = 0','x');
simplify(s);
(eqn,cond,‘IgnoreAnalyticConstraints’,false) %设置不化简结果
5.方程组问题
求解方程组 
[f,g]= dsolve('Df = f + g','Dg = -f + g','f(0)=1','g(0) = 2','x');
一些例子

dsolve('D2y+4*Dy+29*y = 0','y(0) = 0','Dy(0)= 15 ','x')
ans =
3*sin(5*x)*exp(-2*x)

[x y z] = dsolve('Dx = 2*x-3*y+3*z','Dy = 4*x-5*y+3*z','Dz = 4*x-4*y+2*z')
x =
C7*exp(2*t) + C8*exp(-t)
y =
C7*exp(2*t) + C8*exp(-t) + C9*exp(-2*t)
z =
C7*exp(2*t) + C9*exp(-2*t)
%可以对其进行简化操作
x = simplify(x)
x = C7*exp(2*t) + C8*exp(-t)
y = simplify(y)
y =exp(-2*t)*(C9 + C8*exp(t) + C7*exp(4*t))
数值解
%龙格库塔法(Runge-Kutta法)
xfun=@(t,x)0.3.*x.*(1-x/8); %定义赋值函数r=0.3,k=8
[tout,xout]=ode45(fun,[0,40],0.1) %方程数值解,四五阶RK法
[tout,xout]=ode23(xfun,[t0,tfinal],x0) %二三阶RK法
%%
ode系列数值求解形如 / = ( , )的微分方程组, 并绘图。
xfun: 输入参数,函数必须恰有t,x两个变量,用函数文件定义的fun.m则用@fun或‘fun’调用。
t0:输入参数,t的初始值。
tfinal:输入参数,t的终值。
x0:输入参数,x的初始值。
tout: 离散的自变量值, xout: 离散的函数值。
%%
同时也有一些其他的求解语句和输出语句
%%
其他的求解语句
ode45 ode113 ode15s
ode23s ode23t ode23tb
其他的输出语句
odeplot odeprint
odephas2 odephas3
%%
一个例子
求
的数值解
首先对该方程进行换元
然后建立m文件
function fyy=rhf(t,x)
fyy=[y(1).*(1-y(2).^2)+y(2);y(1)];
end
最后计算数值解
y0=[0.25,0]’;
[t,y]=ode23(‘rhf’,[0,0.25],y0);
plot(t,y)
一些例子

%vdp1000.m
function dy = vdp1000(t,y)
dy = zeros(2,1);
dy(1) = y(2);
dy(2) = 1000*(1-y^2)*y2-y1;
end
%命令行输入
[T,Y] = ode15s('vdp1000',[0 3000],[2 0]);%第一个参数是文件名,第二个参数是初始时间和终止时间第三个参数是y1和y2的初值
plot(T,Y(:,1),'-');
%结果是T时间
plot(T,Y(:,1),'-k');,画Y数组中的第一列数随着T的变化曲线,‘-k’表示颜色黑色实线,




%定义函数
function dy=eq1(x,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=1/5*sqrt(1+y(1)^2)/(1-x);
end
调用
x0=0;
xf=0.9999;
[x,y]=ode15s('eq1',[x0 xf],[0 0]);
plot(x,y(:,1),'-')
hold on
y=0:0.01:2;
plot(1,y,'*')

微分方程模型
1.种群增长Logistic模型

- N(t)表示在时刻 t时刻种群数量
- r 表示种群的内禀增长率,即在没有资源限制下的种群增长率
- K表示环境载量,反映资源环境对种群增长的制约作用
2.生物种群竞争模型

- 用 N1(t)和N2(t) 分别表示在时刻
甲、乙两个种群数量。
- a11 表示种群甲自身的被抑制的情况
- a12 表示种群乙对种群甲的竞争力
参考: https://zhuanlan.zhihu.com/p/162296418
用Matlab求解微分方程的更多相关文章
- MATLAB求解代数方程、微分方程的一些常用指令
MATLAB版本:R2015b 1.求解符号矩阵的行列式.逆.特征值.特征向量 A = sym('[a11, a12; a21, a22]');deltaA = det(A)invA = inv(A) ...
- 龙哥库塔法or欧拉法求解微分方程matlab实现
举例:分别用欧拉法和龙哥库塔法求解下面的微分方程 我们知道的欧拉法(Euler)"思想是用先前的差商近似代替倒数",直白一些的编程说法即:f(i+1)=f(i)+h*f(x,y)其 ...
- Matlab学习——求解微分方程(组)
介绍: 1.在 Matlab 中,用大写字母 D 表示导数,Dy 表示 y 关于自变量的一阶导数,D2y 表示 y 关于自变量的二阶导数,依此类推.函数 dsolve 用来解决常微分方程(组)的求解问 ...
- matlab 求解线性规划问题
线性规划 LP(Linear programming,线性规划)是一种优化方法,在优化问题中目标函数和约束函数均为向量变量的线性函数,LP问题可描述为: minf(x):待最小化的目标函数(如果问题本 ...
- fslove - Matlab求解多元多次方程组
fslove - Matlab求解多元多次方程组 简介: 之前看到网上的一些资料良莠不齐,各种转载之类的,根本无法解决实际问题,所以我打算把自己的学到的总结一下,以实例出发讲解fsolve. 示例如下 ...
- ode45求解微分方程(MATLAB)
首先介绍一下ode45的格式: [t,y] = ode45(odefun,tspan,y0) [t,y] = ode45(odefun,tspan,y0,options) [t,y,te,ye,ie] ...
- MATLAB求解二重积分案例
凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 定积分解决的是一维连续量求和的问题,而解决多维连续量的求和问题就要用到重积分了.重积分是建立在定积分的基础上的 ...
- yalmip + lpsolve + matlab 求解混合整数线性规划问题(MIP/MILP)
最近建立了一个网络流模型,是一个混合整数线性规划问题(模型中既有连续变量,又有整型变量).当要求解此模型的时候,发现matlab优化工具箱竟没有自带的可以求解这类问题的算法(只有bintprog求解器 ...
- MATLAB求解非线性方程组
matlab中有专门的solve函数来解决方程组的(a-x)^2+(b-y)^2=e^2(C-x)^2+(D-y)^2=v^2已知a,b,c,d,e,v 值求解 X,Y 请问用 matlab 如何写, ...
随机推荐
- Mysql 中字符串的截取
一.从左开始截取字符串 用法:left(str, length),即:left(被截取字符串, 截取长度) mysql> SELECT LEFT('hello,world',3); +----- ...
- ctf实验吧Once More
题目链接:http://ctf5.shiyanbar.com/web/more.php 思路分析:显然是后台逻辑代码. 1.ereg函数有漏洞,可以使用%00截断,这个就做笔记了好吧.这个函数大致意思 ...
- Vue3 + TypeScript 开发实践总结
前言 迟来的Vue3文章,其实早在今年3月份时就把Vue3过了一遍.在去年年末又把 TypeScript 重新学了一遍,为了上 Vue3 的车,更好的开车.在上家公司4月份时,上级领导分配了一个内部的 ...
- 矩阵按对角线打印---python
将一个矩阵(二维数组)按对角线向右进行打印.(搜了一下发现好像是美团某次面试要求半小时手撕的题)Example:Input:[[1,2,3,4],[5,1,2,3],[9,5,1,2]]Output: ...
- C语言:读TXT 模拟键盘打字输出
//#include<ctype.h> #include<stdio.h> #include <windows.h> //#include "string ...
- C语言:fopen函数
在C语言中,操作文件之前必须先打开文件:所谓"打开文件",就是让程序和文件建立连接的过程.打开文件之后,程序可以得到文件的相关信息,例如大小.类型.权限.创建者.更新时间等.在后续 ...
- if函数+isna函数+vlookup函数实现不同列相同单元格内容排列在同一行
1,首先学习的网址:https://jingyan.baidu.com/album/22a299b5dd0f959e19376a22.html?picindex=1 2,excel 这也许是史上最好最 ...
- Requests方法 -- Http协议的短链接与长连接介绍
转载于简书: 作者:熊师傅链接:https://www.jianshu.com/p/3fc3646fad80 1.以前的误解 很久之前就听说过长连接的说法,而且还知道HTTP1.0协议不支持长连接,从 ...
- 啥是 MySQL 事务隔离级别?
之前发过一篇文章,简单了解 MySQL 中相关的锁,里面提到了,如果我们使用的 MySQL 存储引擎为 InnoDB ,并且其事务隔离级别是 RR 可重复读的话,是可以避免幻读的. 但是没想到,都 1 ...
- 极致简洁的微前端框架-京东MicroApp开源了
前言 MicroApp是一款基于类WebComponent进行渲染的微前端框架,不同于目前流行的开源框架,它从组件化的思维实现微前端,旨在降低上手难度.提升工作效率.它是目前市面上接入微前端成本最低的 ...