首先,我们需要给一个连通块找到一个直观的合法判定解。

那么我们必须以一种直观的方式将边按照权值分开,这样才能直观地判定一个合法的组。

一个常见的方式是将边从小到大依次加入进来,那么在任意时刻图上存在的边和不存在的边就恰好被一个权值分开了。

那么我们可以很清晰地发现,一个联通块是合法的,当且仅当在上述流程的某个时刻这个连通块会形成一个团。

于是此时一个很暴力的做法就是预处理出所有合法的连通块,然后状压 \(dp\),但这样是指数级的,显然不可取。

看似这个问题已经难以优化了,但你会发现上面这个依次加边的模型非常类似于 \(\rm Kruskal\) 重构树,那么这个 \(dp\) 可不可以在重构树上被优化呢?

那么你会发现上面的这个团只可能是 \(\rm Kruskal\) 重构树上的一颗子树或一个单点,同时这些团也可以在 \(\rm Kruskal\) 的流程中求出。

于是问题就转化为给定一棵树,你需要把这颗树划分成 \(k\) 个联通块,每个可划分的联通块都是给定的的方案。

不难发现这个东西可以直接树形背包 \(O(n ^ 2)\) 解决。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
#define Next(i, u) for (int i = h[u]; i; i = e[i].next)
const int N = 3000 + 5;
const int M = 1500 + 5;
const int Mod = 998244353;
struct edge { int v, next;} e[N << 1];
int n, tot, cnt, d[N], h[N], sz[N], fa[N], x[M * M], y[M * M], a[M][M], dp[N][M];
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int Inc(int a, int b) { return (a += b) >= Mod ? a - Mod : a;}
int Mul(int a, int b) { return 1ll * a * b % Mod;}
int find(int x) { return fa[x] == x ? fa[x] : fa[x] = find(fa[x]);}
void add(int u, int v) {
e[++tot].v = v, e[tot].next = h[u], h[u] = tot;
e[++tot].v = u, e[tot].next = h[v], h[v] = tot;
}
void dfs(int u, int fa) {
int a = 0, b = 0;
Next(i, u) {
int v = e[i].v; if(v == fa) continue;
dfs(v, u); if(!a) a = v; else b = v;
}
rep(i, 1, sz[a]) rep(j, 1, sz[b]) dp[u][i + j] = Inc(dp[u][i + j], Mul(dp[a][i], dp[b][j]));
if(d[u] == sz[u] * (sz[u] - 1) / 2) dp[u][1] = 1;
}
int main() {
n = cnt = read();
rep(i, 1, n) rep(j, 1, n) a[i][j] = read(), x[a[i][j]] = i, y[a[i][j]] = j;
rep(i, 1, 2 * n) fa[i] = i, sz[i] = (i <= n);
rep(i, 1, n * (n - 1) / 2) {
int Fx = find(x[i]), Fy = find(y[i]);
if(Fx != Fy) {
d[++cnt] = d[Fx] + d[Fy] + 1, sz[cnt] = sz[Fx] + sz[Fy];
fa[Fx] = fa[Fy] = cnt, add(cnt, Fx), add(cnt, Fy);
}
else ++d[Fx];
}
dfs(cnt, 0);
rep(i, 1, n) printf("%d ", dp[cnt][i]);
return 0;
}

值得一提的是,当我们的做法与某个算法流程本质相同时,可以尝试在这个算法的基础上对我们的做法进行优化。

CF1408G Clusterization Counting的更多相关文章

  1. CodeForces 1408G Clusterization Counting

    题意 给定 \(n\) 个点的无向带权完全图,边权为 \(1\sim\frac{n(n-1)}{2}\).对于满足 \(1\leq k\leq n\) 的每个 \(k\) 求出将原图划分成 \(k\) ...

  2. Solution -「CF 1480G」Clusterization Counting

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 阶完全图,边权为 \(1\sim\frac{n(n-1)}2\) 的排列.称一种将点集划分为 \(k\) ...

  3. 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  4. POJ_2386 Lake Counting (dfs 错了一个负号找了一上午)

    来之不易的2017第一发ac http://poj.org/problem?id=2386 Lake Counting Time Limit: 1000MS   Memory Limit: 65536 ...

  5. ZOJ3944 People Counting ZOJ3939 The Lucky Week (模拟)

    ZOJ3944 People Counting ZOJ3939 The Lucky Week 1.PeopleConting 题意:照片上有很多个人,用矩阵里的字符表示.一个人如下: .O. /|\ ...

  6. find out the neighbouring max D_value by counting sort in stack

    #include <stdio.h> #include <malloc.h> #define MAX_STACK 10 ; // define the node of stac ...

  7. 1004. Counting Leaves (30)

    1004. Counting Leaves (30)   A family hierarchy is usually presented by a pedigree tree. Your job is ...

  8. 6.Counting Point Mutations

    Problem Figure 2. The Hamming distance between these two strings is 7. Mismatched symbols are colore ...

  9. 1.Counting DNA Nucleotides

    Problem A string is simply an ordered collection of symbols selected from some alphabet and formed i ...

随机推荐

  1. Java用sort实现对数组的降序排序

    在调用Arrays.sort()对数组进行排序时,默认是升序排序的,如果想让数组降序排序,有下面两种方法: 利用Collections的reverseOrder import java.util.*; ...

  2. @Transactional 注解实现

    @Transactional注解简介 @Transactional是spring中声明式事务管理的注解配置方式,相信这个注解的作用大家都很清楚.@Transactional注解可以帮助我们把事务开启. ...

  3. Linux查看CPU详细信息

    1.查看CPU详细信息 在Linux服务器上查看CPU详细信息: cat /proc/cpuinfo 输出结果: processor : 0 vendor_id : GenuineIntel cpu ...

  4. 表达式树扩展 动态生成表达式树插件 Sy.ExpressionBuilder。

    CURD中,基础查询我感觉还是很烦人的一个浪费时间的工作,我经历过远古时代的GetAll(string name,int age),这种方式写服务的时候真的是心中一万个草泥马飞过,后面逐渐的变成了传一 ...

  5. JDK_win10环境下安装JDK8时点击下一步没反应的解决办法

    问题现象 打开JDK8,点击下一步就没后续了... 解决方法 百度了一下"win10安装jdk8点下一步无响应" . 按照博客中说的操作试了下...安装成功了... 只想说...什 ...

  6. Centos6.8安装并配置VNC

    一般服务器都会在IDC或云端,为了可以看到服务器的图形化界面,需要安装配置VNC,本例为Centos6.8上安装配置VNC. [root@hostname ~]#yum install -y tige ...

  7. Go语言系列之标准库strconv

    Go语言中strconv包实现了基本数据类型和其字符串表示的相互转换. strconv包 strconv包实现了基本数据类型与其字符串表示的转换,主要有以下常用函数: Atoi().Itia().pa ...

  8. PPT2010制作充电动画

    原文: https://www.toutiao.com/i6492264647318569486/ 启动PPT2010,新建一张空白幻灯片 选择"插入"选项卡,"插图&q ...

  9. 《剑指offer》面试题55 - I. 二叉树的深度

    问题描述 输入一棵二叉树的根节点,求该树的深度.从根节点到叶节点依次经过的节点(含根.叶节点)形成树的一条路径,最长路径的长度为树的深度. 例如: 给定二叉树 [3,9,20,null,null,15 ...

  10. Solon Web 开发,十二、统一的渲染控制

    Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...