[POI2009]SLO-Elephants
首先可以发现我们可以发现最终状态和初始状态都是一个大小为 \(n\) 的排列,且恰好有 \(n\) 种关系,于是我们对于每个 \(a_i\) 连一条 \(a_i \rightarrow b_i\) 的有向边,这张图的形态将会相对简单。
因为每个位置最终变成的数不同,因此这张图将会是由若干个简单环构成。如果环的大小为 \(1\) 则不需要交换,如果环的大小为 \(2\) 则直接交换即可,下面我们考虑环的大小至少为 \(3\) 的情况。
不难发现我们要做的相当于把环上的每个点向前挪一个,我们先考虑只交换环内点,那么最小的方案就会是从某个点开始一直往下不断交换,令 \(S\) 为环上点权值之和,\(len\) 为环的大小,那么这样的代价就会是 \(S + (len - 2) \times w_i\) 那么我们只需要选择一个最小的 \(w_i\) 上去交换一圈即可。如果考虑可以和环外的点交换,必然是选择环内环外权值最小的两个点交换,再由环外最小的点在环内交换一圈,实际上每次环外权值最小的点交换完后我们可以直接和原来的交换回来,因为如果我们不交换回来,那么最终这小和它交换的点可以构成一个新的环,那么还需要再交换回来一次,这样的代价是一样的,为了方便起见我们直接交换回来即可。
#include<bits/stdc++.h>
using namespace std;
#define N 1000000 + 5
#define inf 1000000000
#define int long long
#define rep(i, l, r) for(int i = l; i <= r; ++i)
bool book[N];
int n, sum, len, ans, M, Min, w[N], a[N], b[N], nxt[N];
int read(){
char c; int x = 0, f = 1;
c = getchar();
while(c > '9' || c < '0'){ if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
void dfs(int u){
if(book[u]) return; book[u] = true;
Min = min(Min, w[u]), sum += w[u], ++len;
dfs(nxt[u]);
}
signed main(){
n = read(), M = inf;
rep(i, 1, n) w[i] = read(), M = min(M, w[i]);
rep(i, 1, n) a[i] = read();
rep(i, 1, n) b[i] = read();
rep(i, 1, n) nxt[a[i]] = b[i];
rep(i, 1, n) if(!book[i]){
Min = inf, sum = 0, len = 0;
dfs(i);
if(len == 1) continue;
if(sum + (len - 2) * Min < Min + sum + (len + 1) * M) ans += sum + (len - 2) * Min;
else ans += Min + sum + (len + 1) * M;
}
printf("%lld", ans);
return 0;
}
[POI2009]SLO-Elephants的更多相关文章
- BZOJ1119: [POI2009]SLO
1119: [POI2009]SLO Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 379 Solved: 181[Submit][Status] ...
- BZOJ1119[POI2009]SLO && BZOJ1697[Usaco2007 Feb]Cow Sorting牛排序
Problem J: [POI2009]SLO Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 622 Solved: 302[Submit][Sta ...
- 【BZOJ 1119】 1119: [POI2009]SLO (置换)
1119: [POI2009]SLO Description 对于一个1-N的排列(ai),每次你可以交换两个数ax与ay(x<>y),代价为W(ax)+W(ay) 若干次交换的代价为每次 ...
- 【BZOJ】1119: [POI2009]SLO
题意 长度为\(n(1 \le n \le 1000000)\)的账单,\(+\)表示存1,\(-\)表示取1,任意时刻存款不会为负.初始有\(p\),最终有\(q\).每一次可以耗时\(x\)将某位 ...
- P1119: [POI2009]SLO
这题预处理稍微动动脑,其实还是个裸的置换群=-=,没什么压力. ; var n,i,j,minx,tem,now,tmin,len:longint; cursum,sum:int64; pos,num ...
- bzoj1697:[Usaco2007 Feb]Cow Sorting牛排序 & bzoj1119:[POI2009]SLO
思路:以bzoj1119为例,题目已经给出了置换,而每一次交换的代价是交换二者的权值之和,而置换一定是会产生一些环的,这样就可以只用环内某一个元素去置换而使得其余所有元素均在正确的位置上,显然要选择环 ...
- BZOJ 1119: [POI2009]SLO [置换群]
传送门:现在$POI$上的题洛谷都有了,还要$BZOJ$干什么 和$cow\ sorting$一样,只不过问$a_i \rightarrow b_i$ 注意置换是位置而不是数值...也就是说要$i$的 ...
- bzoj 1119 [POI2009]SLO && bzoj 1697 [Usaco2007 Feb]Cow Sorting牛排序——思路(置换)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1119 https://www.lydsy.com/JudgeOnline/problem.p ...
- bzoj 1119 [POI2009] SLO & bzoj 1697 牛排序 —— 置换+贪心
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1119 https://www.lydsy.com/JudgeOnline/problem.p ...
- [POI2009]SLO
Description 对于一个1-N的排列(ai),每次你可以交换两个数ax与ay(x<>y),代价为W(ax)+W(ay) 若干次交换的代价为每次交换的代价之和.请问将(ai)变为(b ...
随机推荐
- Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
目录 概 主要内容 Locatello F., Bauer S., Lucic M., R"{a}tsch G., Gelly S. Sch"{o}lkopf and Bachem ...
- [opencv]<学习Opencv>英文原版翻译学习
[注]下文全部内容为 <<Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library>>经由在线翻译整理 ...
- CS5211替代PS8625|设计DP转LVDS转接板|替代PS8625方案
1.CS5211与PS8625功能概述 CS5211是一个eDP到LVDS转换器,配置灵活,适用于低成本显示系统.CS5211与eDP 1.2兼容,支持1通道和2通道模式,每通道速度为1.62Gbps ...
- Zookeeper基础教程(一):认识Zookeeper
引用百度百科的话 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一致性服 ...
- Linux下如何部署FTP服务器
FTP 是 File Transfer Protocol 的缩写,即文件传输协议,它通过网络在服务器和客户端之间传输文件,现在已经成为一种广泛使用的标准工具 vsftpd 是 very secure ...
- Python max()方法扩展:求字典中值最大的键
重要的应该写在前面[捂脸] 场景一:仅求最大值对应的键,代码如下: >>> dic = {'A':4, 'B':2, 'C':3} >>> max_key = ...
- nginx 超时时间配置说明
做excel文件导入时 报 504 错误 是nginx网关超时导致 下面几个参数貌似没效果,反正我配置不起作用 这是有问题的配置属性 ,注意 于是我换了配置 ,放在http块里 ,配置生效了 #读 ...
- [ css ] 实现漂亮的输入框动画(借鉴自panjiachen的后台管理项目)
效果预览 HTML <div class="l-custom-input"> <input size="large" id="l-i ...
- Golang中Label的用法
在Golang中能使用Label的有goto, break, continue.,这篇文章就介绍下Golang中Label使用和注意点. 注意点: Label在continue, break中是可选的 ...
- SQL高级优化(三)之存储引擎
一.MySQL数据库引擎简介 1. ISAM(indexed Sequential Access Method) ISAM 是一个定义明确且历经时间考验的数据表格管理方法,它在设计之时就考虑到数据 ...