$$\begin{eqnarray}&\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)\\&\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}ij[\gcd(i,j)=d] \\&\sum_{d=1}^{n}d^3\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}ij[\gcd(i,j)=1] \\&\sum_{d=1}^{n}d^3\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}ij\sum_{x|\gcd(i,j)}\mu(x) \\&\sum_{d=1}^{n}d^3\sum_{x=1}^{\frac{n}{d}}x^2\mu(x)\sum_{i=1}^{\frac{n}{dx}}\sum_{j=1}^{\frac{n}{dx}}ij \\&\sum_{d=1}^{n}d^3\sum_{x=1}^{\frac{n}{d}}x^2\mu(x)(1+2+3+…\lfloor \frac{n}{xd} \rfloor )^2 \\&令s(x)=(1+x)*x/2 \\&\sum_{d=1}^{n}d^3\sum_{x=1}^{\frac{n}{d}}x^2\mu(x)s(\lfloor\frac{n}{xd}\rfloor)^2\\&令T=dx \\&\sum_{T=1}s(\lfloor\frac{n}{T}\rfloor)^2\sum_{d|T}d^3\frac{T}{d}^2\mu(\frac{T}{d})\\&\sum_{T=1}s(\lfloor\frac{n}{T}\rfloor)^2T^2\sum_{d|T}d\mu(\frac{T}{d})\\&\sum_{T=1}s(\lfloor\frac{n}{T}\rfloor)^2T^2\varphi(T)\\&令f(x)=x^2\varphi(x)\\&sum(n)=\sum_{i=1}^{n}(g*f)(i)-\sum_{i=2}^{n}g(i)sum(n/i)(杜教筛式子)\\&(g*f)(i)=i*i\sum_{d|i}\varphi(d)=i^3\\&sum(n)=\sum_{i=1}^{n} i^{3}-\sum_{i=2}^{n} i^{2} sum\left(\frac{n}{i}\right)\\&ans=\sum_{T=1}^{n} \operatorname{sum}\left(\frac{n}{T}\right)^{2} T^{2} \sum_{d|T} d \mu\left(\frac{T}{d}\right)\\&\end{eqnarray}$$

#include<bits/stdc++.h>
#define int long long
using namespace std;
const long long INF=1LL<<31;
int N=8000000;
int cnt,n;
long long p[8001000],inv2,inv6,ans,zhi[8001000],mod;
bool he[8001000];
map<long long,long long>M;
long long S(long long x){x%=mod;return x*(x+1)%mod*inv2%mod;}
long long Sump(long long x){x%=mod;return x*(x+1)%mod*(x+x+1)%mod*inv6%mod;}
void xxs()
{
he[1]=p[1]=1;
for(int i=2;i<=N;i++)
{
if(he[i]==0)
{
p[i]=(i-1)%mod;
zhi[++cnt]=i;
}
for(int j=1;j<=cnt&&i*zhi[j]<=N;j++)
{
he[i*zhi[j]]=true;
if(i%zhi[j]==0)
{
p[i*zhi[j]]=1LL*p[i]*zhi[j]%mod;
break;
}
else
{
p[i*zhi[j]]=1LL*p[i]*(zhi[j]-1)%mod;
}
}
}
for(int i=1;i<=N;i++)p[i]=(p[i-1]+1ll*p[i]*i%mod*i%mod)%mod;
}
long long SF(long long x)
{
if(x<=N)
return p[x];
if(M.find(x)!=M.end())
return M[x];
long long ret=S(x);
ret=ret*ret%mod;
for(long long i=2,r;i<=x;i=r+1)
{
r=x/(x/i);
long long tt=(Sump(r)-Sump(i-1))%mod;
ret-=SF(x/i)*tt%mod;
ret%=mod;
}
return M[x]=(ret+mod)%mod;
}
long long quick_pow(long long a,long long b)
{
long long res=1;
while(b>0)
{
if(b&1)
{
res*=a;
res%=mod;
}
a*=a;
a%=mod;
b>>=1;
}
return res;
}
signed main()
{
scanf("%lld%lld",&mod,&n);
inv2=quick_pow(2,mod-2);
inv6=quick_pow(6,mod-2);
xxs();
for(long long i=1,r;i<=n;i=r+1)
{
r=n/(n/i);
long long tt=S(n/i);
tt=tt*tt%mod;
long long gg=(SF(r)-SF(i-1))%mod;
ans+=gg*tt%mod;
ans%=mod;
}
printf("%lld\n",(ans+mod)%mod);
return 0;
}

洛谷P3768 简单的数学题解题报告的更多相关文章

  1. 洛谷 P3768 简单的数学题 解题报告

    P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...

  2. 【刷题】洛谷 P3768 简单的数学题

    题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd ...

  3. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

  4. 洛谷 P3768 简单的数学题

    https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\ ...

  5. 洛谷P3768 简单的数学题

    解: 神奇的一批......参观yyb巨神的博客. 大致思路就是第一步枚举gcd,发现后面有个限制是gcd=1,用反演,得到的F(x)是两个等差数列求积. 然后发现有个地方我们除法的除数是乘积,于是换 ...

  6. 洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)

    传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.or ...

  7. 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】

    题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...

  8. 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛

    题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...

  9. 洛谷 P3768 简单的数学题 (莫比乌斯反演)

    题意:求$(\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j))mod p$(p为质数,n<=1e10) 很显然,推式子. $\sum_{i=1}^{n}\sum_{j ...

随机推荐

  1. 【LeetCode】133. 克隆图

    133. 克隆图 知识点:图:递归;BFS 题目描述 给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆). 图中的每个节点都包含它的值 val(int) 和其邻居的列表(list[No ...

  2. pointnet.pytorch代码解析

    pointnet.pytorch代码解析 代码运行 Training cd utils python train_classification.py --dataset <dataset pat ...

  3. DC-4 靶机渗透测试

    DC-4 渗透测试 冲冲冲,努力学习 .掌握 hydra ,nc反弹shell 记住你要干嘛, 找地方上传shell(大多以后台登录为切入点,再反弹shell),shell提权到root 操作机:ka ...

  4. LeetCode入门指南 之 链表

    83. 删除排序链表中的重复元素 存在一个按升序排列的链表,给你这个链表的头节点 head ,请你删除所有重复的元素,使每个元素 只出现一次 .返回同样按升序排列的结果链表. class Soluti ...

  5. 杭电OJ 输入输出练习汇总

    主题 Calculate a + b 杭电OJ-1000 Input Each line will contain two integers A and B. Process to end of fi ...

  6. CTF_论剑场_Web20

    直接上脚本,多跑几次就能出flag import requests import re url = "http://123.206.31.85:10020/" s = reques ...

  7. ABP框架使用Oracle数据库,并实现从SQLServer中进行数据迁移的处理

    ABP框架的数据访问底层是基于EFCore(Entity Framework Core)的,是微软标志性且成熟的ORM,因此它本身是支持多种主流数据库MySQL,SqlServer,Oracle,SQ ...

  8. A Python Environment Detector

    The user provide the method to get result(command on remote host), the check standard(a callback fun ...

  9. 【原创】Java内存攻击技术漫谈

    前言 Java技术栈漏洞目前业已是web安全领域的主流战场,随着IPS.RASP等防御系统的更新迭代,Java攻防交战阵地已经从磁盘升级到了内存里面. 在今年7月份上海银针安全沙龙上,我分享了< ...

  10. uwp 动画之圆的放大与缩小

    xml code --------------------------------------------------- <Page x:Class="MyApp.MainPage&q ...