力扣链接:146. LRU 缓存机制

思路:哈希表 + 双向链表

为什么必须要用双向链表?

因为我们需要删除操作。删除一个节点不光要得到该节点本身的指针,也需要操作其前驱节点的指针,而双向链表才能支持直接查找前驱,保证操作的时间复杂度 O(1)。

为什么要在链表中同时存储 key 和 val,而不是只存储 val?

当缓存容量已满,我们不仅仅要删除最后一个节点,还要把哈希表 中映射到该节点的 key 同时删除,而这个 key 只能由 节点得到。如果 节点结构中只存储 val,那么我们就无法得知 key 是什么,就无法删除 哈希表中的键,造成错误。

代码

我这里是向尾部添加数据,所以头部的是不活跃的数据值

type LRUCache struct {  //LRU 缓存结构
capacity int // 容量
m map[int]*Node //哈希表
cache *NodeList //双向链表
} type Node struct{ //节点结构
key int
value int
prev *Node //前一个节点
next *Node //后一个节点
} func initNode(key,value int)*Node{ //初始化节点
return &Node{
key:key,
value:value,
}
} type NodeList struct{ //链表结构
head *Node //链表头节点
last *Node //链表尾节点
size int //元素个数
} func initList ()*NodeList{ //初始化链表
dil:=&NodeList{
head:initNode(0,0),
last:initNode(0,0),
size:0,
}
dil.head.next=dil.last
dil.last.prev=dil.head return dil
} func (this *NodeList)addNodeinlist(node *Node){ //向链表中插入节点,向链表尾部插节点
node.prev=this.last.prev
this.last.prev=node
node.prev.next=node
node.next=this.last this.size++
} func (this *NodeList)deleteNodeinlist (node *Node){ //删除链表中的某一结点
node.prev.next=node.next
node.next.prev=node.prev
node.next=nil
node.prev=nil
this.size--
} func (this *NodeList)delfirstNode()*Node{ //删除第一个节点,并且返回
if this.head.next==this.last{
return nil
}
t:=this.head.next
this.deleteNodeinlist(t) return t
} func Constructor(capacity int) LRUCache { //初始化 LRU 缓存
return LRUCache{
capacity:capacity,
m:make(map[int]*Node,0),
cache:initList(),
}
} func (this *LRUCache)addkey(key,value int){ //添加元素
node:=initNode(key,value)
//增加map映射
this.m[key]=node //在链表中添加元素
this.cache.addNodeinlist(node)
} func (this *LRUCache)makekey(key int){ // 将某个 key 调整为最近使用的元素
//找到节点
node:=this.m[key]
//删除节点
this.cache.deleteNodeinlist(node)
// 添加到链表尾部
this.cache.addNodeinlist(node)
} func (this *LRUCache)deletekey(key int){ //删除元素 //删除链表中节点
this.cache.deleteNodeinlist(this.m[key])
//删除map映射
delete(this.m,key)
} func (this *LRUCache)deletefirkey(){ //删除最久未使用的元素
// 链表的第一个就是最近最少使用的元素
node:=this.cache.delfirstNode() // 删除映射
delete(this.m,node.key)
} func (this *LRUCache) Get(key int) int {
if _,ok:=this.m[key];ok{
//存在
this.makekey(key) //将某个 key 调整为最近使用的元素
return this.m[key].value
}else{
//不存在
return -1
} } func (this *LRUCache) Put(key int, value int) {
// 检查key存不存在
if _,ok:=this.m[key];ok{
//存在
//删除元素
this.deletekey(key) //添加元素到尾部
this.addkey(key,value) }else{
//不存在
if this.capacity==this.cache.size{
//缓存达到上限
//删除最久未使用的元素
this.deletefirkey()
}
//添加元素到尾部
this.addkey(key,value)
}
}

参考:

https://leetcode-cn.com/problems/lru-cache/solution/jian-dan-shi-li-xiang-xi-jiang-jie-lru-s-exsd/

【golang必备算法】 Letecode 146. LRU 缓存机制的更多相关文章

  1. Java实现 LeetCode 146 LRU缓存机制

    146. LRU缓存机制 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - ...

  2. 力扣 - 146. LRU缓存机制

    目录 题目 思路 代码 复杂度分析 题目 146. LRU缓存机制 思路 利用双链表和HashMap来解题 看到链表题目,我们可以使用头尾结点可以更好进行链表操作和边界判断等 还需要使用size变量来 ...

  3. 146. LRU 缓存机制 + 哈希表 + 自定义双向链表

    146. LRU 缓存机制 LeetCode-146 题目描述 题解分析 java代码 package com.walegarrett.interview; /** * @Author WaleGar ...

  4. [Leetcode]146.LRU缓存机制

    Leetcode难题,题目为: 运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key ...

  5. 【力扣】146. LRU缓存机制

    运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果关键字 (key) ...

  6. 146. LRU缓存机制

    题目描述 运用你所掌握的数据结构,设计和实现一个LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (key ...

  7. Leetcode 146. LRU 缓存机制

    前言 缓存是一种提高数据读取性能的技术,在计算机中cpu和主内存之间读取数据存在差异,CPU和主内存之间有CPU缓存,而且在内存和硬盘有内存缓存.当主存容量远大于CPU缓存,或磁盘容量远大于主存时,哪 ...

  8. leetcode:146. LRU缓存机制

    题目描述: 运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 ( ...

  9. LeetCode 146. LRU缓存机制(LRU Cache)

    题目描述 运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (k ...

随机推荐

  1. QQ三国 秘制机簧去哪打?打的太慢?

    我在完成这个任务时卡了很久,因为打的效率极低,因此最后我是如何完成的. 1. 先说打谁吧,刚开始我打机簧蜘蛛,就没打出来过,,后来换了机簧车,掉率就上升了,建议打机簧车. 2. 如果你一直打不出来,建 ...

  2. C11 (GNU Dialect) -std=gnu11 和 -std=c11

    C11 (GNU Dialect) -std=gnu11 和 -std=c11 C11 (GNU Dialect) -std=gnu11 和 -std=c11 用于 IntelliSense 的 C ...

  3. 【原创】浅谈指针(五)const和指针

    前言 过了几个月再次更新.最近时间也不多了,快要期中考试了,暂且先少写一点吧. 本文仅在博客园发布,如在其他平台发现均为盗取,请自觉支持正版. 练习题 我们先来看几道题目.如果这几道题都不会的话,就先 ...

  4. (课内)信安数基RSA-基础&&解密加速

    RSA基本实现 首先获得N比特的伪随机数:使用Random库中内容. randint(n,m) 表示生成一个在n和m之间的随机数, **表示乘幂. getPrime找素数,or 1运算是一种优化:如果 ...

  5. Coursera Deep Learning笔记 结构化机器学习项目 (下)

    参考:https://blog.csdn.net/red_stone1/article/details/78600255https://blog.csdn.net/red_stone1/article ...

  6. [软工顶级理解组] Beta阶段项目展示

    目录 团队成员 软件介绍 项目简介 预期典型用户 功能描述 预期目标用户数 用户反馈 团队管理 分工协作 项目管理 取舍平衡 代码管理 程序测试 代码规范 文档撰写 继续开发指导性 用户沟通 需求分析 ...

  7. Spring DeferredResult 异步请求

    Spring DeferredResult 异步请求 一.背景 二.分析 三.实现要求 四.后端代码实现 五.运行结果 1.超时操作 2.正常操作 六.DeferredResult运行原理 六.注意事 ...

  8. linux上docker形式部署GB28181服务wvp,zlmedia

    目录 1.bash方式从镜像创建docker 2.下载vim 3.修改run.sh bug如下 4.修改application.xml 5.运行一下sh run.sh 6.Vim config.ini ...

  9. MyBatis源码分析(二):MyBatis整体架构及原理

    一.Mybatis整体架构导图 二.Mybatis的核心组成 SqlSessionFactoryBuilder(构造器): 根据配置信息(XML)生成SqlSessionFactory工厂接口,构造器 ...

  10. 外网访问vm虚拟机

    目录 一.准备 二.外网访问主机电脑 三.外网访问VM虚拟机 一.准备 外网ip:39.189.8.5 访问https://www.ip138.com 可以查询外网ip 内网主机ip:192.168. ...