洛谷 P6060 - [加油武汉]传染病研究(数论)
一道不算太难的题,题解稍微写写吧(
首先根据约数个数和公式,对于一个 \(n=p_1^{\alpha_1}·p_2^{\alpha_2}·\cdots·p_m^{\alpha_m}\),显然有 \(D(n^k)=\prod\limits_{i=1}^m(k\alpha_i+1)\),由于每次询问给定的 \(k\) 不固定,我们无法一次性直接对所有 \(k\) 都算一波答案。不过注意到对于一个 \(n\in[1,10^7]\) 而言,其质因子个数不会超过 \(8\),这也就启发我们,上面的 \(\prod\) 展开后肯定是关于 \(k\) 的次数不超过 \(8\) 的多项式,因此考虑对每个 \(n\) 求出其对应的多项式的系数然后累加求个前缀和,这样我们即可在 \(\mathcal O(8)\) 的复杂度内回答询问。那么怎么对每个 \(n\) 求出其对应的多项式呢?考虑一个非常 naive 的 DP,首先我们对于每个数求出其最小质因子 \(mnp_i\)——这显然可以一遍线性筛搞定,学过一丁点数论的人都能够搞定。我们再找出 \(mnp_i\) 在 \(i\) 中的次数,假设为 \(\alpha\),那么我们记 \(x=\dfrac{i}{mnp_i^{\alpha}}\),那么显然就有 \(f_{i,j}=f_{x,j-1}·\alpha+f_{x,j}\),其中 \(f_{i,j}\) 为 \(i\) 对应的多项式第 \(j\) 项的系数,随便递推一下即可。
时间复杂度 \(\mathcal O(8·n)\)。这个故事告诉我们下次看到数论题目,有时候也可以从每个数不同质因子个数很小这一点出发,可以获得不错的复杂度。
const int MAXN=1e7;
const int OMEGA=8;
const int MOD=998244353;
int pr[MAXN/10+5],prcnt=0,mnp[MAXN+5],omega[MAXN+5];
bitset<MAXN+5> vis;
int s[MAXN+5][OMEGA+2];
void sieve(int n){
for(int i=2;i<=n;i++){
if(!vis[i]) mnp[i]=i,pr[++prcnt]=i,omega[i]=1;
for(int j=1;j<=prcnt&&pr[j]*i<=n;j++){
vis[i*pr[j]]=1;mnp[i*pr[j]]=pr[j];
if(i%pr[j]==0){omega[i*pr[j]]=omega[i];break;}
omega[i*pr[j]]=omega[i]+1;
}
} s[1][0]=1;
for(int i=2;i<=n;i++){
int tmp=i,sum=0,p=mnp[i];
while(tmp%p==0) tmp/=p,sum++;
for(int j=0;j<=omega[i];j++) s[i][j]=s[tmp][j];
for(int j=0;j<omega[i];j++) s[i][j+1]+=s[tmp][j]*sum;
}
for(int i=0;i<=OMEGA;i++) for(int j=1;j<=n;j++)
s[j][i]=(s[j-1][i]+s[j][i])%MOD;
}
int pw[OMEGA+2];
int main(){
sieve(MAXN);int qu;scanf("%d",&qu);
while(qu--){
int n,k,res=0;scanf("%d%d",&n,&k);
for(int i=(pw[0]=1);i<=OMEGA;i++) pw[i]=1ll*pw[i-1]*k%MOD;
for(int i=0;i<=OMEGA;i++) res=(res+1ll*pw[i]*s[n][i])%MOD;
printf("%d\n",res);
}
return 0;
}
洛谷 P6060 - [加油武汉]传染病研究(数论)的更多相关文章
- 洛谷P6060 [加油武汉]传染病研究
一道不错的数学题 Solution 看到约数个数就想到枚举约数,但对于每个询问都枚举显然不现实,但是我们可以将大致的方向锁定在这方面,是否可以预处理出一定的东西,然后低复杂度询问呢? 我们想到预处理出 ...
- E 洛谷 P3598 Koishi Loves Number Theory[数论]
题目描述 Koishi十分喜欢数论. 她的朋友Flandre为了检测她和数论是不是真爱,给了她一个问题. 已知 给定和个数,求对取模. 按照套路,呆萌的Koishi当然假装不会做了,于是她来向你请教这 ...
- 洛谷P3158 放棋子 [CQOI2011] dp+数论
正解:dp+数论 解题报告: 传送门! 考虑对每种颜色的棋子单独考虑鸭,那显然有,当某一行或某一列已经被占据的时候,那一行/一列就不能再放别的颜色的棋子了,相当于直接把那一行/一列直接消了 显然就能考 ...
- 洛谷P4495 奇怪的背包 [HAOI2018] 数论
正解:数论+dp 解题报告: 传送门! 首先看到这题,跳无数次,自然而然可以想到之前考过好几次了的一个结论——如果只考虑无限放置i,它可以且仅可以跳到gcd(p,v[i]) 举一反三一下,如果有多个i ...
- 洛谷P2303 [SDOi2012] Longge的问题 数论
看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...
- 洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$
正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有 ...
- 洛谷P4640 王之财宝 [BJWC2008] 数论
正解:容斥+Lucas+组合数学 解题报告: 传送门! 和上一篇题解的题差不多,,,双倍经验趴大概算 还是说下还是有点儿区别的来着$QwQ$ 两个小差别分别港下$QwQ$ 首先有$m-n$件是无穷个的 ...
- 洛谷P3455 ZAP-Queries [POI2007] 莫比乌斯反演+数论分块
正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n) ...
- 洛谷P1634 禽兽的传染病 题解
题目传送门 最近都在刷红色的水题... 这道题因为是不断地传染,所以直接求幂次方就好啦... 但是一测样例WA了... 原来x初始需要加1... 提交评测WA了... 原来要开long long .. ...
随机推荐
- MyBatis的框架设计
1.MyBatis的框架设计 2.整体设计 2.1 总体流程 (1)加载配置并初始化 触发条件:加载配置文件 配置来源于两个地方,一处是配置文件,一处是Java代码的注解,将SQL的配置信 ...
- 1.2 Simple Code!(翻译)
Simple Code! 简洁编码 Playing football is very simple, but playing simple football is the hardest thing ...
- Head First Python 代码和实例下载
http://python.itcarlow.ie/resources.html
- elasticsearch的dsl查询
测试es的dsl查询,准备数据,在插入数据的时候,如果index.type.mapping都没有,es会自动创建 一.数据的准备 curl -XPOST "http://192.168.99 ...
- 2021.8.5考试总结[NOIP模拟31]
暴力打满直接rk3? T1 Game 想了一万种贪心和两万种$hack$. 可以先用最显然的贪心求出最高得分是多少.(从小到大用最小的大于$b_i$的$a$得分) 然后用一棵权值线段树维护值域内$a$ ...
- 攻防世界 杂项 2.embarrass
解1: linux环境下直接strings misc_02.pcapng | grep flag可得flag. 解2: 使用wireshark搜索flag. 解3: winhex搜索flag.
- linux下uptime命令
https://man.linuxde.net/uptime uptime命令能够打印系统总共运行了多长时间和系统的平均负载.uptime命令可以显示的信息显示依次为:现在时间.系统已经运行了多长时间 ...
- Spring Cloud Alibaba环境搭建
前言:Spring Cloud Alibaba是目前主流的分布式微服务架构,本文主要讲解了在IDEA中如何搭建Spring Cloud Alibaba环境,以及介绍Spring Cloud Aliba ...
- RDD的缓存
RDD的缓存/持久化 缓存解决的问题 缓存解决什么问题?-解决的是热点数据频繁访问的效率问题 在Spark开发中某些RDD的计算或转换可能会比较耗费时间, 如果这些RDD后续还会频繁的被使用到,那么可 ...
- IDEA安装热部署插件JRebel
首先说下热部署是什么意思吧,简单了说就是在我们对代码进行更改之后,不需要重启项目,重新编译一下就可以直接运行最新的代码的部署方式.既然是部署方式,项目启动部署的时候当然就会和正常情况下不一样啦~ JR ...