洛谷题面传送门

一道不算太难的题,题解稍微写写吧(

首先根据约数个数和公式,对于一个 \(n=p_1^{\alpha_1}·p_2^{\alpha_2}·\cdots·p_m^{\alpha_m}\)​,显然有 \(D(n^k)=\prod\limits_{i=1}^m(k\alpha_i+1)\)​,由于每次询问给定的 \(k\) 不固定,我们无法一次性直接对所有 \(k\) 都算一波答案。不过注意到对于一个 \(n\in[1,10^7]\) 而言,其质因子个数不会超过 \(8\),这也就启发我们,上面的 \(\prod\) 展开后肯定是关于 \(k\) 的次数不超过 \(8\) 的多项式,因此考虑对每个 \(n\) 求出其对应的多项式的系数然后累加求个前缀和,这样我们即可在 \(\mathcal O(8)\) 的复杂度内回答询问。那么怎么对每个 \(n\) 求出其对应的多项式呢?考虑一个非常 naive 的 DP,首先我们对于每个数求出其最小质因子 \(mnp_i\)——这显然可以一遍线性筛搞定,学过一丁点数论的人都能够搞定。我们再找出 \(mnp_i\) 在 \(i\) 中的次数,假设为 \(\alpha\),那么我们记 \(x=\dfrac{i}{mnp_i^{\alpha}}\),那么显然就有 \(f_{i,j}=f_{x,j-1}·\alpha+f_{x,j}\),其中 \(f_{i,j}\) 为 \(i\) 对应的多项式第 \(j\) 项的系数,随便递推一下即可。

时间复杂度 \(\mathcal O(8·n)\)。这个故事告诉我们下次看到数论题目,有时候也可以从每个数不同质因子个数很小这一点出发,可以获得不错的复杂度。

const int MAXN=1e7;
const int OMEGA=8;
const int MOD=998244353;
int pr[MAXN/10+5],prcnt=0,mnp[MAXN+5],omega[MAXN+5];
bitset<MAXN+5> vis;
int s[MAXN+5][OMEGA+2];
void sieve(int n){
for(int i=2;i<=n;i++){
if(!vis[i]) mnp[i]=i,pr[++prcnt]=i,omega[i]=1;
for(int j=1;j<=prcnt&&pr[j]*i<=n;j++){
vis[i*pr[j]]=1;mnp[i*pr[j]]=pr[j];
if(i%pr[j]==0){omega[i*pr[j]]=omega[i];break;}
omega[i*pr[j]]=omega[i]+1;
}
} s[1][0]=1;
for(int i=2;i<=n;i++){
int tmp=i,sum=0,p=mnp[i];
while(tmp%p==0) tmp/=p,sum++;
for(int j=0;j<=omega[i];j++) s[i][j]=s[tmp][j];
for(int j=0;j<omega[i];j++) s[i][j+1]+=s[tmp][j]*sum;
}
for(int i=0;i<=OMEGA;i++) for(int j=1;j<=n;j++)
s[j][i]=(s[j-1][i]+s[j][i])%MOD;
}
int pw[OMEGA+2];
int main(){
sieve(MAXN);int qu;scanf("%d",&qu);
while(qu--){
int n,k,res=0;scanf("%d%d",&n,&k);
for(int i=(pw[0]=1);i<=OMEGA;i++) pw[i]=1ll*pw[i-1]*k%MOD;
for(int i=0;i<=OMEGA;i++) res=(res+1ll*pw[i]*s[n][i])%MOD;
printf("%d\n",res);
}
return 0;
}

洛谷 P6060 - [加油武汉]传染病研究(数论)的更多相关文章

  1. 洛谷P6060 [加油武汉]传染病研究

    一道不错的数学题 Solution 看到约数个数就想到枚举约数,但对于每个询问都枚举显然不现实,但是我们可以将大致的方向锁定在这方面,是否可以预处理出一定的东西,然后低复杂度询问呢? 我们想到预处理出 ...

  2. E 洛谷 P3598 Koishi Loves Number Theory[数论]

    题目描述 Koishi十分喜欢数论. 她的朋友Flandre为了检测她和数论是不是真爱,给了她一个问题. 已知 给定和个数,求对取模. 按照套路,呆萌的Koishi当然假装不会做了,于是她来向你请教这 ...

  3. 洛谷P3158 放棋子 [CQOI2011] dp+数论

    正解:dp+数论 解题报告: 传送门! 考虑对每种颜色的棋子单独考虑鸭,那显然有,当某一行或某一列已经被占据的时候,那一行/一列就不能再放别的颜色的棋子了,相当于直接把那一行/一列直接消了 显然就能考 ...

  4. 洛谷P4495 奇怪的背包 [HAOI2018] 数论

    正解:数论+dp 解题报告: 传送门! 首先看到这题,跳无数次,自然而然可以想到之前考过好几次了的一个结论——如果只考虑无限放置i,它可以且仅可以跳到gcd(p,v[i]) 举一反三一下,如果有多个i ...

  5. 洛谷P2303 [SDOi2012] Longge的问题 数论

    看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...

  6. 洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$

    正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有 ...

  7. 洛谷P4640 王之财宝 [BJWC2008] 数论

    正解:容斥+Lucas+组合数学 解题报告: 传送门! 和上一篇题解的题差不多,,,双倍经验趴大概算 还是说下还是有点儿区别的来着$QwQ$ 两个小差别分别港下$QwQ$ 首先有$m-n$件是无穷个的 ...

  8. 洛谷P3455 ZAP-Queries [POI2007] 莫比乌斯反演+数论分块

    正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n) ...

  9. 洛谷P1634 禽兽的传染病 题解

    题目传送门 最近都在刷红色的水题... 这道题因为是不断地传染,所以直接求幂次方就好啦... 但是一测样例WA了... 原来x初始需要加1... 提交评测WA了... 原来要开long long .. ...

随机推荐

  1. 二、Ansible基础之模块篇

    目录 1. Ansible Ad-Hoc 命令 1.1 命令格式 1.2 模块类型 1.3 联机帮助 1.3.1 常用帮助参数 1.4 常用模块 1.4.1 command & shell 模 ...

  2. TypeError: Restaurant() takes no arguments

    1. 错误描述 TypeError: Restaurant() takes no arguments 2. 原因:在编写__init__时,pycharm会自动添加关键字,有时会直接写称整型int, ...

  3. Scrum Meeting 16

    第16次例会报告 日期:2021年06月11日 会议主要内容概述: 最后一次例会 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wiki,如下记录仅为保证公开性: 组员 负责 ...

  4. UltraSoft - Alpha - Scrum Meeting 3

    Date: Apr 15th, 2020. 会议内容为 贡献分确定与进度汇报. Scrum 情况汇报 进度情况 组员 负责 昨日进度 后两日任务 CookieLau PM.后端 学习前后端分离技术的项 ...

  5. STM32入门-STM32时钟系统,时钟初始化配置函数

    在前面推文的介绍中,我们知道STM32系统复位后首先进入SystemInit函数进行时钟的设置,然后进入主函数main.那么我们就来看下SystemInit()函数到底做了哪些操作,首先打开我们前面使 ...

  6. cURL 命令获取本机外网 IP

    1.1 查询本机外网 IP # curl dhcp.cn 134.175.159.160 1.2 输出格式为 JSON # curl dhcp.cn/?json { "IP": & ...

  7. PyPi到底是什么?pypi有啥作用?PyPi和pip有何渊源?

    转载:https://blog.csdn.net/weixin_42139375/article/details/82711201 可能有很多刚入行不久的朋友们,每天都在用pip 命令install ...

  8. 【转】PLI是什么以及怎么用

    programmable language interface 这里就说给verilog用的一些系统函数,还是无双大大的帖子 首先介绍了怎么让你自己写的pli系统函数在ncverilog里面可以成功调 ...

  9. linux切换shell

    1. $SHELL这一环境变量用于保存当前用户使用的shell,所以我们可以输出$SHELL来查看当前使用的shell是什么: 2. 查看/etc/shells文件,可以看到当前系统中安装的有效的sh ...

  10. vim vi 高亮第80列 Python PEP8规范 行最大长度设置

    命令模式下 :set cc=80 或者 打开 vim的配置 文件 .vimrc vim ~/.vimrc 接着你会看到你的配置文件 在配置文件中加上这样行配置代码 set cc=80 ok 现在退出v ...