*X. P3571 [POI2014]SUP-Supercomputer

题意简述:一棵以 \(1\) 为根的树。\(q\) 次询问,每次给出 \(k\),求至少要多少次同时访问不超过 \(k\) 次父节点已经被访问过的节点,才能访问完整棵树。根节点无限制。

\(n,q\leq 10^6\)。

节选自 DP 优化方法大杂烩 7. 斜率优化例题 X。

sweet tea.

主要讲一下怎么用斜率优化,取 \(\max\) 的正确性别的题解说明得已经很好了。

对于每一个 \(k\),一定存在 \(i\) 使得深度不大于 \(i\) 的节点用 \(i\) 次访问,且深度大于 \(i\) 的节点每次都能访问 \(k\) 个(除了最后一次)。记 \(s_i\) 表示深度不小于 \(i\) 的节点个数,答案即为 \(\max_{i=1}^d\left(i+\lceil\dfrac{s_{i+1}}k\rceil\right)\),其中 \(d\) 是最大深度。

若 \(i\) 是最优决策,那么对于任意一个 \(j\neq i\),有 \(i+\lceil\dfrac{s_{i+1}}k\rceil\geq j+ \lceil\dfrac{s_{j+1}}k\rceil\)。略作变形得到 \(i-j \geq \lceil\dfrac{s_{j+1}-s_{i+1}}k\rceil\)。令横坐标为深度,纵坐标为 \(s_{x+1}\),再写成斜率的形式,即当 \(j<i\) 时,\(\dfrac{s_{i+1}-s_{j+1}}{i-j}\geq -k\),当 \(j>i\) 时,\(\dfrac{s_{i+1}-s_{j+1}}{i-j}\leq -k\)。不难看出这是一个上凸包的形式,即斜率递减

具体地,我们对 \((i,s_i)\) 建出上凸包,然后当 \(k\) 递增时,\(-k\) 递减,顶点会向横坐标大的方向移动,用指针维护即可。时间复杂度 \(\mathcal{O}(n)\)。

经过卡常拿到了最优解。

const int N=1e6+5;

int n,q,mxd,mxq,dep[N],f[N],qu[N];
int d[N],hd=1,tl;
ll s[N]; int main(){
cin>>n>>q,dep[1]=s[1]=1;
for(int i=1;i<=q;i++)mxq=max(mxq,qu[i]=read());
for(int i=2,a;i<=n;i++)mxd=max(mxd,dep[i]=dep[read()]+1),s[dep[i]]++;
for(int i=mxd-1;i;i--)s[i]+=s[i+1];
for(int i=0;i<=mxd;i++){
while(hd<tl&&(s[d[tl]+1]-s[d[tl-1]+1])*(i-d[tl])<=(s[i+1]-s[d[tl]+1])*(d[tl]-d[tl-1]))tl--;
d[++tl]=i;
}
for(int i=1;i<=mxq;i++){
while(hd<tl&&s[d[hd+1]+1]-s[d[hd]+1]>-i*(d[hd+1]-d[hd]))hd++;
f[i]=d[hd]+(d[hd]==mxd?0:((s[d[hd]+1]-1)/i+1));
}
for(int i=1;i<=q;i++)print(f[qu[i]]),pc(' ');
return flush(),0;
}

P3571 [POI2014]SUP-Supercomputer的更多相关文章

  1. DP 优化方法大杂烩 & 做题记录 I.

    标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...

  2. BZOJ3835: [Poi2014]Supercomputer

    Description Byteasar has designed a supercomputer of novel architecture. It may comprise of many (id ...

  3. BZOJ3835[Poi2014]Supercomputer——斜率优化

    题目描述 Byteasar has designed a supercomputer of novel architecture. It may comprise of many (identical ...

  4. 【BZOJ】3835: [Poi2014]Supercomputer

    题意 \(n(1 \le 1000000)\)个点的有根树,\(1\)号点为根,\(q(1 \le 1000000)\)次询问,每次给一个\(k\),每一次可以选择\(k\)个未访问的点,且父亲是访问 ...

  5. 题解-POI2014 Supercomputer

    Problem 辣鸡bzoj权限题,洛谷链接 题意概要:一棵 \(n\) 个点有根树.\(Q\) 次询问给出一个 \(K\),回答遍历完整棵树所需最少操作次数.每次操作可以选择访问不超过 \(K\) ...

  6. BZOJ3835 [Poi2014]Supercomputer 【斜率优化】

    题目链接 BZOJ3835 题解 对于\(k\),设\(s[i]\)为深度大于\(i\)的点数 \[ans = max\{i + \lceil \frac{s[i]}{k}\} \rceil\] 最优 ...

  7. [POI2014]Supercomputer

    题目大意: 给定一个$n(n\le10^6)$个结点的有根树,从根结点开始染色.每次可以染和已染色结点相邻的任意$k$个结点.$q(q\le10^6)$组询问,每次给定$k$,问至少需要染几次? 思路 ...

  8. 题解 洛谷 P3571 【[POI2014]SUP-Supercomputer】

    由数据范围可得出,不可能一次一次去进行回答询问,只能离线处理,然后\(O(1)\)解决. 考虑\(DP\)解决,先给出\(DP\)方程: \(f_i=max(j+ \lceil \frac{s_{j+ ...

  9. POI2014题解

    POI2014题解 [BZOJ3521][Poi2014]Salad Bar 把p当作\(1\),把j当作\(-1\),然后做一遍前缀和. 一个合法区间\([l,r]\)要满足条件就需要满足所有前缀和 ...

随机推荐

  1. JSP(java server pages)安装开发和执行环境

    JSP是一种动态网页技术标准. 它是在传统的网页HTML文件中插入Java程序段(Scriptlet)和JSP标记(tag)的.jsp文件: java程序段:操纵数据库,重新定向网页,发送email等 ...

  2. 【Spring】IoC容器 - 依赖来源

    前言 上一篇文章已经学习了[依赖注入]相关的知识,这里详细的介绍一下[依赖来源]. 依赖来源 我们把依赖来源分为依赖查找的来源和依赖注入的来源分别讨论. 依赖查找的来源 1. Spring BeanD ...

  3. 【Java虚拟机11】线程上下文类加载器

    前言 目前学习到的类加载的知识,都是基于[双亲委托机制]的.那么JDK难道就没有提供一种打破双亲委托机制的类加载机制吗? 答案是否定的. JDK为我们提供了一种打破双亲委托模型的机制:线程上下文类加载 ...

  4. [no code][scrum meeting] Alpha 8

    项目 内容 会议时间 2020-04-14 会议主题 API文档第一版交付 会议时长 30min 参会人员 PM+OCR组成员 $( "#cnblogs_post_body" ). ...

  5. [no_code]OCR表格处理——功能规格说明书

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 功能规格说明书 我们在这个课程的目标是 远程协同工作,采用最新技术开发软件 这个作业在哪个具体方面 ...

  6. NKOJ-4573 Falsita

    问题描述: 到海边了呢...... 如果没有那次选择,现在是不是会好些呢...... 都过去了. 仰望着星空,迎面吹过一阵阵海风,倚靠着护栏,Fine 在海边静静地伫立着,在一个个无际的长夜后,Fin ...

  7. 『学了就忘』Linux基础 — 5、使用VMware创建虚拟机

    目录 1.在VMware中创建虚拟机 (1)点击[创建新的虚拟机]. (2)选择系统安装方式 (3)选择客户机操作系统 (4)自定义虚拟机的名称和安装位置. (5)指定系统硬盘容量 (6)完成创建 2 ...

  8. Github点赞超多的Spring Boot学习教程+实战项目推荐!

    Github点赞接近 100k 的Spring Boot学习教程+实战项目推荐!   很明显的一个现象,除了一些老项目,现在 Java 后端项目基本都是基于 Spring Boot 进行开发,毕竟它这 ...

  9. 第12课 OpenGL 显示列表

    显示列表: 想知道如何加速你的OpenGL程序么?这一课将告诉你如何使用OpenGL的显示列表,它通过预编译OpenGL命令来加速你的程序,并可以为你省去很多重复的代码. 这次我将教你如何使用显示列表 ...

  10. jquery 实现 <imput>标签 密码框显示/隐藏密码功能

    1 <!doctype html> 2 <html> 3 <head> 4 <meta charset="utf-8"> 5 < ...