参考网址: https://www.jianshu.com/p/cb5af6b5096d

算法导论--最小生成树

最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。

image.png

1.Kruskal算法

此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。

  1. 把图中的所有边按代价从小到大排序;
  2. 把图中的n个顶点看成独立的n棵树组成的森林;
  3. 按权值从小到大选择边,所选的边连接的两个顶点ui,viui,vi,应属于两颗不同的树,则成为最小生成树的一条边,并将这两颗树合并作为一颗树。
  4. 重复(3),直到所有顶点都在一颗树内或者有n-1条边为止。

     

    image.png

Prim算法

此算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中。算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点。

1.图的所有顶点集合为VV;初始令集合u={s},v=V−uu={s},v=V−u;

2.在两个集合u,vu,v能够组成的边中,选择一条代价最小的边(u0,v0)(u0,v0),加入到最小生成树中,并把v0v0并入到集合u中。

3.重复上述步骤,直到最小生成树有n-1条边或者n个顶点为止。

 

 
image.png

哈夫曼树

哈夫曼树又称最优二叉树。它是 n 个带权叶子结点构成的所有二叉树中,带权路径长度 WPL 最小的二叉树。

假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,则哈夫曼树的构造规则为:

(1) 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);

(2) 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;

(3)从森林中删除选取的两棵树,并将新树加入森林;

(4)重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。

 

image.png

注意:为了使得到的哈夫曼树的结构尽量唯一,通常规定生成的哈夫曼树中每个结点的左子树根结点的权小于等于右子树根结点的权。

哈夫曼编码

在电报通信中,电文是以二进制的0、1序列传送的,每个字符对应一个二进制编码,为了缩短电文的总长度,采用不等长编码方式,构造哈夫曼树,

将每个字符的出现频率作为字符结点的权值赋予叶子结点,每个分支结点的左右分支分别用0和1编码,从树根结点到每个叶子结点的路径上

所经分支的0、1编码序列等于该叶子结点的二进制编码。如上文所示的哈夫曼编码如下:

 

image.png

最短路径问题---Dijkstra算法

最短路径问题介绍

问题解释:

从图中的某个顶点出发到达另外一个顶点的所经过的边的权重和最小的一条路径,称为最短路径。

 

 
image.png

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!

第1步:将顶点D加入到S中。

此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。

上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。

此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。

上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。

此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。

此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。

此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。

此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。

此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。

作者:第六象限
链接:https://www.jianshu.com/p/cb5af6b5096d
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

经典树与图论(最小生成树、哈夫曼树、最短路径问题---Dijkstra算法)的更多相关文章

  1. 牛客假日团队赛2 C 修围栏 ( 哈夫曼树,贪心)

    链接:https://ac.nowcoder.com/acm/contest/924/C 来源:牛客网 修围栏 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言6 ...

  2. Java 树结构实际应用 二(哈夫曼树和哈夫曼编码)

     赫夫曼树 1 基本介绍 1) 给定 n 个权值作为 n 个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为 最优二叉树,也称为哈夫曼树(Huffman Tree), ...

  3. C++哈夫曼树编码和译码的实现

    一.背景介绍: 给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的 ...

  4. 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  5. 哈夫曼树(三)之 Java详解

    前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:htt ...

  6. 哈夫曼树(二)之 C++详解

    上一章介绍了哈夫曼树的基本概念,并通过C语言实现了哈夫曼树.本章是哈夫曼树的C++实现. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载 ...

  7. 哈夫曼树(一)之 C语言详解

    本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若 ...

  8. 【算法】赫夫曼树(Huffman)的构建和应用(编码、译码)

    参考资料 <算法(java)>                           — — Robert Sedgewick, Kevin Wayne <数据结构>       ...

  9. Android版数据结构与算法(七):赫夫曼树

    版权声明:本文出自汪磊的博客,未经作者允许禁止转载. 近期忙着新版本的开发,此外正在回顾C语言,大部分时间没放在数据结构与算法的整理上,所以更新有点慢了,不过既然写了就肯定尽力将这部分完全整理好分享出 ...

  10. 6-9-哈夫曼树(HuffmanTree)-树和二叉树-第6章-《数据结构》课本源码-严蔚敏吴伟民版

    课本源码部分 第6章  树和二叉树 - 哈夫曼树(HuffmanTree) ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接☛☛☛ <数据结构-C语言版> ...

随机推荐

  1. python使用笔记21--发邮件

    发邮件需要第三方模块 pip install yamail 1 #import yagmail #--别人写的,发中文附件的时候是乱码 2 import yamail #牛牛基于yagmail改的 3 ...

  2. Linux账号和权限管理(第二回合)

    一.组账号文件二.添加组账号groupadd三.添加删除组成员gpasswd四.删除组账号groupdel五.查询账号信息finger六.文件/目录的权限和归属七.设置文件和目录的归属chown 一. ...

  3. WIN10家庭版 访问WINXP 共享打印机

    WIN10家庭版 1.安装对应的打印机驱动 2.打开WIN10计算机---在地址栏中输入:\\计算机XP名称,显示对应的共享资源,直接选择即可.如果无法访问则进行如下第三步 3.设置过程 开始 -设置 ...

  4. C语言:char讲解与例子

    #include <stdio.h> main() { char bla,blb,blc;//声明或定义三个字符型变量,变量名为bla,blb,blc //字符型数据用标识符char来标识 ...

  5. python 模拟点击微信

    from PyQt5 import QtCore,QtWidgets import win32gui, win32api, win32con # 调用win32api的模拟点击功能实现ctrl+v粘贴 ...

  6. Anaconda3中的python安装新模块

    1.确认安装位置:D:\Anaconda3 2.进入: D:\Anaconda3\Scripts 3.pip install -i https://pypi.tuna.tsinghua.edu.cn/ ...

  7. 00JAVA语法基础_四则运算 01

    自动生成30道四则运算的数学题,当前只是简单符合出题,答题和判断的代码,还没做要求,所以现在只是能随机生成三十道100以内的加减法和九九乘法表的乘除法 package Sizeyunsuan; /** ...

  8. Bat脚本备份sqlserver 表结构、存储过程、函数、指定表数据

    Bat脚本备份sqlserver 表结构.存储过程.指定表数据: @echo off cd /d %~dp0 ::备份表结构.存储过程和部分配置表的数据 set LogFile=report.log ...

  9. MapReduce学习总结之Combiner、Partitioner、Jobhistory

    一.Combiner 在MapReduce编程模型中,在Mapper和Reducer之间有一个非常重要的组件,主要用于解决MR性能瓶颈问题 combiner其实属于优化方案,由于带宽限制,应该尽量ma ...

  10. C语言学习之基本数据类型【一】

    近期学习鸿蒙硬件物联网开发,用到的开发语言是C: 一.基础语法:第一个案例: 命令 gcc hello.c #include <stdio.h> //stdio.h 是一个头文件 , #i ...