题意:现在有一个数写在黑板上,它以等概率转化为它的一个约数,可以是1,问经过k次转化后这个数的期望值

题解:如果这个数是一个素数的n次方,那么显然可以用动态规划来求这个数的答案,否则的话,就对每个素因数求答案,再相乘

参考博客:https://www.cnblogs.com/birchtree/p/10234203.html

ac代码:

#include<bits/stdc++.h>
#define ll long long
#define pa pair<int,int>
using namespace std;
const int maxn=100+10;
const int mod=1e9+7;
ll po[70],dp[10000+10][70];
int m;
ll qpow(ll x,ll n)
{
ll res=1,b=x;
while(n)
{
if(n&1)res=res*b%mod;
b=b*b%mod;
n/=2;
//cout<<<<endl;
}
return res;
}
ll solve(int a,ll b)
{
memset(dp,0,sizeof(dp));
dp[0][a]=1;
for(int i=1;i<=m;i++)
for(int j=0;j<=a;j++)
for(int k=j;k<=a;k++)
dp[i][j]=(dp[i][j]+dp[i-1][k]*po[k+1])%mod;
ll res=0;
for(int i=0;i<=a;i++)
res=(res+dp[m][i]*qpow(b,i)%mod)%mod;
return res;
}
int main()
{
ll ans=1,n;
for(int i=1;i<70;i++)
po[i]=qpow(i,mod-2);
scanf("%lld %d",&n,&m);
for(ll i=2;i*i<=n;i++)
{
if(n%i==0)
{
int k=0;
while(n%i==0)
{
//cout<<1<<endl;
k++;
n/=i;
}
ans=ans*solve(k,i)%mod;
}
}
if(n!=1)ans=ans*solve(1,n)%mod;
printf("%lld\n",ans);
return 0;
}

  

codeforces#1097 D. Makoto and a Blackboard(dp+期望)的更多相关文章

  1. CodeForces - 1097D:Makoto and a Blackboard (积性)

    Makoto has a big blackboard with a positive integer n written on it. He will perform the following a ...

  2. codeforces1097D Makoto and a Blackboard 数学+期望dp

    题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! ...

  3. CF1097D Makoto and a Blackboard(期望)

    [Luogu-CF1097D] 给定 \(n,k\)一共会进行 \(k\) 次操作 , 每次操作会把 \(n\) 等概率的变成 \(n\) 的某个约数 求操作 \(k\) 次后 \(n\) 的期望是多 ...

  4. CF1097D Makoto and a Blackboard

    题目地址:CF1097D Makoto and a Blackboard 首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP: 令 \(f_{i,j}\) 为第 \(i\) 次替换 ...

  5. codeforces 1097 Hello 2019

    又回来了.. A - Gennady and a Card Game 好像没什么可说的了. #include<bits/stdc++.h> using namespace std; cha ...

  6. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  7. [CodeForces - 1272D] Remove One Element 【线性dp】

    [CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...

  8. Codeforces 878 E. Numbers on the blackboard

    Codeforces 878 E. Numbers on the blackboard 解题思路 有一种最优策略是每次选择最后面一个大于等于 \(0\) 的元素进行合并,这样做完以后相当于给这个元素乘 ...

  9. D Makoto and a Blackboard

    Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

随机推荐

  1. Sqlserver分区表

    1. 分区表简介 分区表在逻辑上是一个表,而物理上是多个表.从用户角度来看,分区表和普通表是一样的.使用分区表的主要目的是为改善大型表以及具有多个访问模式的表的可伸缩性和可管理性. 分区表是把数据按设 ...

  2. iOS 让视图UIView 单独显示某一侧的边框线

    有时候需要让view显示某一侧的边框线,这时设置layer的border是达不到效果的.在网上查阅资料发现有一个投机取巧的办法,原理是给view的layer再添加一个layer,让这个layer充当边 ...

  3. Angular之模态弹窗ui-bootstrap-modal及轻量级弹窗ngDialog

    ui-bootstrap 中模态 官网 angular-ui-bootstrap   对于ui-bootstrap集成大量指令如折叠ui.bootstrap.accordion.时间插件ui.boot ...

  4. 【C编程基础】make命令和makefile文件

    1.关于程序的编译和链接 一般来说,无论是C.C++首先要把源文件编译成中间目标文件即 Object File(windows为.obj文件,unix为.o文件),这个动作叫做编译(compile). ...

  5. 「APIO2017」商旅

    「APIO2017」商旅 题目描述 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所深深吸引,决定定居于此,做一个商人.科巴有 \(N\) 个集市, ...

  6. springboot事物回滚

    要添加事物 必须在方法上添加 @Transactional 注解 如果需要事物回滚有两个条件 1.方法中有异常或者主动抛异常 2.主动去回滚 TransactionAspectSupport.curr ...

  7. SQL 简介

    SQL 是用于访问和处理数据库的标准的计算机语言. 什么是 SQL? SQL 指结构化查询语言 SQL 使我们有能力访问数据库 SQL 是一种 ANSI 的标准计算机语言 编者注:ANSI,美国国家标 ...

  8. python六十九课——网络编程之TCP协议

    1.1 概述: TCP协议通过三次握手协议将客户端与服务器端连接,两端使用各自的Socket对象.Socket对象中包含了IO流,供数据传输. 即:TCP协议在客户端与服务器端通过Socket组成了I ...

  9. Unicode与UTF-8关系

    Unicode字符集合 Unicode 也称为 UCS(Universal Coded Character Set:国际编码字符集合) 是一个字符集合. 对世界上大部分的文字系统进行了整理,编码,使电 ...

  10. 洛谷P1274-魔术数字游戏

    Problem 洛谷P1274-魔术数字游戏 Accept: 118    Submit: 243Time Limit: 1000 mSec    Memory Limit : 128MB Probl ...