树上倍增+kruskal

要找严格次小生成树,肯定先要找到最小生成树。

我们先把最小生成树的边找出来建树,然后依次枚举非树边,容易想到一种方式:

  • 对于每条非树边(u,v),他会与树上的两个点构成环,我们在树上的两个点路径上找到最大值a和次大值b,如果非树边(u,v)的权值大于a,那么用mst-a+w(u,v)
  • 如果非树边(u, v)的权值等于a,那么用mst-b+w(u,v)

    枚举完所有非树边之后,最小值就是严格次小生成树

对于每个点路径的最大值和次大值,我们可以和LCA一样,用树上倍增的方式

g[s][i][0]表示s到s的第2i次方个祖先的路径上的最大值,g[s][i][1]表示s到s的第2i次方个祖先的路径上的次大值

在查询时只需要将两个点分别往上跳至LCA,最后合并最大值和次大值即可

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define inf 2333333333333333333
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 100005;
const int M = 300005;
int n, m, cnt, head[N], parent[N], depth[N], t, val1, val2;
int p[N][20], g[N][20][2];
ll mst;
bool vis[M];
struct E {
int u, v, w;
bool operator < (const E &rhs) const {
return w < rhs.w;
}
}e[M];
struct Edge { int v, next, w; }edge[M<<1]; void addEdge(int a, int b, int w){
edge[cnt].v = b, edge[cnt].w = w, edge[cnt].next = head[a], head[a] = cnt ++;
} int find(int p){
while(p != parent[p]) parent[p] = parent[parent[p]], p = parent[p];
return p;
} bool isConnect(int p, int q){ return find(p) == find(q); } void unionElements(int p, int q){
int pRoot = find(p), qRoot = find(q);
if(pRoot == qRoot) return;
parent[pRoot] = qRoot;
} void kruskal(){
full(head, -1);
for(int i = 0; i <= n; i ++) parent[i] = i;
sort(e, e + m);
int tot = 0;
for(int i = 0; i < m; i ++){
int u = e[i].u, v = e[i].v;
if(isConnect(u, v)) continue;
unionElements(u, v), addEdge(u, v, e[i].w), addEdge(v, u, e[i].w);
mst += e[i].w, vis[i] = true, tot ++;
if(tot == n - 1) break;
}
} void dfs(int s, int fa){
depth[s] = depth[fa] + 1;
p[s][0] = fa;
for(int i = 1; i <= t; i ++){
p[s][i] = p[p[s][i - 1]][i - 1];
g[s][i][0] = max(g[s][i - 1][0], g[p[s][i - 1]][i - 1][0]);
if(g[s][i - 1][0] == g[p[s][i - 1]][i - 1][0])
g[s][i][1] = max(g[s][i - 1][1], g[p[s][i - 1]][i - 1][1]);
else if(g[s][i - 1][0] > g[p[s][i - 1]][i - 1][0])
g[s][i][1] = max(g[s][i - 1][1], g[p[s][i - 1]][i - 1][0]);
else g[s][i][1] = max(g[s][i - 1][0], g[p[s][i - 1]][i - 1][1]);
}
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa) continue;
g[u][0][0] = edge[i].w, g[u][0][1] = -INF;
dfs(u, s);
}
} int lca(int x, int y){
if(depth[x] < depth[y]) swap(x, y);
for(int i = t; i >= 0; i --){
if(depth[p[x][i]] >= depth[y]) x = p[x][i];
}
if(x == y) return y;
for(int i = t; i >= 0; i --){
if(p[x][i] != p[y][i]) x = p[x][i], y = p[y][i];
}
return p[y][0];
} void calc(int s, int v){
for(int i = t; i >= 0; i --){
if(depth[p[s][i]] >= depth[v]){
if(g[s][i][0] == val1)
val2 = max(val2, g[s][i][1]);
else if(val1 < g[s][i][0])
val2 = max(val1, g[s][i][1]);
else val2 = max(g[s][i][0], g[s][i][1]);
val1 = max(val1, g[s][i][0]);
s = p[s][i];
}
}
} int main(){ n = read(), m = read();
for(int i = 0; i < m; i ++){
e[i].u = read(), e[i].v = read(), e[i].w = read();
}
kruskal();
t = (int)(log(n) / log(2)) + 1;
dfs(1, 0);
ll ans = inf;
val1 = 0, val2 = -INF;
for(int i = 0; i < m; i ++){
if(vis[i]) continue;
int u = e[i].u, v = e[i].v, f = lca(u, v);
calc(u, f), calc(v, f);
if(e[i].w > val1) ans = min(ans, (ll)(mst - val1 + e[i].w));
else ans = min(ans, (ll)(mst - val2 + e[i].w));
}
printf("%lld\n", ans);
return 0;
}

BZOJ 1977 严格次小生成树(算竞进阶习题)的更多相关文章

  1. BZOJ 3261 最大异或和(算竞进阶习题)

    可持久化Trie 需要知道一个异或的特点,和前缀和差不多 a[p] xor a[p+1] xor....xor a[n] xor x = a[p-1] xor a[n] xor x 所以我们把a[1. ...

  2. BZOJ 1977 严格次小生成树

    小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小 ...

  3. BZOJ 1912 巡逻(算竞进阶习题)

    树的直径 这题如果k=1很简单,就是在树的最长链上加个环,这样就最大化的减少重复的路程 但是k=2的时候需要考虑两个环的重叠部分,如果没有重叠部分,则和k=1的情况是一样的,但是假如有重叠部分,我们可 ...

  4. BZOJ 1855 股票交易 (算竞进阶习题)

    单调队列优化dp dp真的是难..不看题解完全不知道状态转移方程QAQ 推出方程后发现是关于j,k独立的多项式,所以可以单调队列优化.. #include <bits/stdc++.h> ...

  5. BZOJ 2200 道路与航线 (算竞进阶习题)

    dijkstra + 拓扑排序 这道题有负权边,但是卡了spfa,所以我们应该观察题目性质. 负权边一定是单向的,且不构成环,那么我们考虑先将正权边连上.然后dfs一次找到所有正权边构成的联通块,将他 ...

  6. 洛谷P4178 Tree (算竞进阶习题)

    点分治 还是一道点分治,和前面那道题不同的是求所有距离小于等于k的点对. 如果只是等于k,我们可以把重心的每个子树分开处理,统计之后再合并,这样可以避免答案重复(也就是再同一个子树中出现路径之和为k的 ...

  7. POJ3417 Network(算竞进阶习题)

    LCA + 树上差分(边差分) 由题目意思知,所有主要边即为该无向图的一个生成树. 我们考虑点(u,v)若连上一条附加边,那么我们切断(u,v)之间的主要边之后,由于附加边的存在,(u,v)之间的路径 ...

  8. POJ 2449 Remmarguts' Date (算竞进阶习题)

    A* + dijkstra/spfa 第K短路的模板题,就是直接把最短路当成估价函数,保证估价函数的性质(从当前状态转移的估计值一定不大于实际值) 我们建反图从终点跑最短路,就能求出从各个点到终点的最 ...

  9. POJ 1821 Fence (算竞进阶习题)

    单调队列优化dp 我们把状态定位F[i][j]表示前i个工人涂了前j块木板的最大报酬(中间可以有不涂的木板). 第i个工人不涂的话有两种情况: 那么F[i - 1][j], F[i][j - 1]就成 ...

随机推荐

  1. Plugin 'Lombok Plugin' is incompatible with this installation

    作者:13 GitHub:https://github.com/ZHENFENG13 版权声明:本文为原创文章,未经允许不得转载. Installation Error Plugin 'Lombok ...

  2. python 链接 redis 失败 由于目标计算机积极拒绝,无法连接

    whereis redis-cli ps -ef |grep redis 1.启动redis redis-server & 2.查看redis 进程 ps -ef |grep redis 3. ...

  3. 线程GIL锁 线程队列 回调函数

    ----------------------------------无法改变风向,可以调整风帆;无法左右天气,可以调整心情.如果事情无法改变,那就去改变观念. # # ---------------- ...

  4. docker配置阿里云镜像加速

    一.登录阿里云控制台,并打开镜像加速器页面,复制加速器地址 二.修改daemon配置文件/etc/docker/daemon.json ,将复制的地址按照如下格式写入文件,若存在多行,使用逗号分隔. ...

  5. Technical Development Guide---for Google

    Technical Development Guide This guide provides tips and resources to help you develop your technica ...

  6. 微信小程序学习笔记以及VUE比较

    之前只是注册了一下微信小程序AppID,随便玩了玩HelloWorld!(项目起手式),但是最近看微信小程序/小游戏,崛起之势不可阻挡.小程序我来了!(果然,一入前端深似海啊啊啊啊啊~) 编辑器: S ...

  7. PS调出最美海滨城市俯拍照

    原图 一.找一张漂亮的风景照片,美丽的海滩. 二.打开PS做效果把图片放进去然后ctrl+j复制一层,添加滤镜-模糊-特殊模糊. 三.然后在这个图层的基础上添加滤镜-滤镜库-干画笔效果. 四.这个时候 ...

  8. 在网站开发时,可以设置防盗,不被复制和F12

    禁止小功能 //禁止右键 document.oncontextmenu = function () { return false } //禁止f12 document.onkeydown = func ...

  9. Vue-router路由使用,单页面的实现

    1.安装路由系统 NPM npm install vue-router 2.在main.js中进入引用 import VueRouter from 'vue-router' 3.创建三个空的组件: V ...

  10. Hive基础

    一.常用语句 二.嵌套语句 以上两句的查询结果相同. 三.关键字查询