codeforces553C Love Triangles
题目链接:codeforces553C Love Triangles
我们来看一下对于一个合法三角形可能出现的边
我们发现,在确定了两边之后,第三条边是什么也就随之确定了
我们用\(1\)表示\(love\),用\(0\)表示\(hate\)
那么\(111-->11,1\)
\(100-->\ 00,1/10,1\)
我们发现,当两条边的数字相同时,第三条边的数字为\(1\),否则为\(0\)
很明显这个条件在反过来时也是成立的
这有什么作用?
我们推广一下:假设我们已知一个点\(u\)它连出去的所有边,那么我们能得到什么?
我们能得到的是这个图的情况,比如两条边\((u,v),(u,w)\),由它们是否相同可以推出\((v,u)\)的情况
所以我们考虑去推出与一个点相连的所有边的情况,我们取这个点为1
那么在一个联通块内的所有点与1点的边的关系是有一个相对关系的,即在确定了一条边的颜色后,我们可以确定整个联通块的边的颜色
所以对这个联通块我们有2种染色方式
再在减去1号点所在的联通块的颜色应该是已知的,所以最后的答案就是2的联通块数-1的乘方
在找联通块的dfs中顺便判掉是否有解
#include<iostream>
#include<string>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
using namespace std;
const int maxd=1e9+7;
struct node{
int to,nxt,cost;
}sq[200200];
int n,m,all=0,head[100100],tag[100100];
bool no_so=0;
int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
}
void add(int u,int v,int w)
{
all++;sq[all].to=v;sq[all].nxt=head[u];sq[all].cost=w;head[u]=all;
}
void dfs(int u)
{
int i;
for (i=head[u];i;i=sq[i].nxt)
{
int v=sq[i].to,w=sq[i].cost;
if (tag[v]==-1)
{
if (w==1) tag[v]=tag[u];else tag[v]=1-tag[u];
dfs(v);
}
else
{
if ((w==1) && (tag[v]!=tag[u])) {no_so=1;return;}
else if ((w==0) && (tag[v]==tag[u])) {no_so=1;return;}
}
}
}
int main()
{
n=read();m=read();int i;
for (i=1;i<=m;i++)
{
int u=read(),v=read(),w=read();
add(u,v,w);add(v,u,w);
}
memset(tag,-1,sizeof(tag));int cnt=-1;
for (i=1;i<=n;i++)
{
if (tag[i]==-1)
{
tag[i]=0;
dfs(i);
if (no_so) {printf("0");return 0;}
else cnt++;
}
}
long long ans=1;
for (i=1;i<=cnt;i++) ans=(ans*2)%maxd;
printf("%I64d",ans);
return 0;
}
codeforces553C Love Triangles的更多相关文章
- Count the number of possible triangles
From: http://www.geeksforgeeks.org/find-number-of-triangles-possible/ Given an unsorted array of pos ...
- [ACM_搜索] Triangles(POJ1471,简单搜索,注意细节)
Description It is always very nice to have little brothers or sisters. You can tease them, lock them ...
- acdream.Triangles(数学推导)
Triangles Time Limit:1000MS Memory Limit:64000KB 64bit IO Format:%lld & %llu Submit Stat ...
- UVA 12651 Triangles
You will be given N points on a circle. You must write a program to determine how many distinctequil ...
- Codeforces Gym 100015F Fighting for Triangles 状压DP
Fighting for Triangles 题目连接: http://codeforces.com/gym/100015/attachments Description Andy and Ralph ...
- Codeforces Round #309 (Div. 1) C. Love Triangles dfs
C. Love Triangles Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/553/pro ...
- Codeforces Round #308 (Div. 2) D. Vanya and Triangles 水题
D. Vanya and Triangles Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55 ...
- Project Euler 94:Almost equilateral triangles 几乎等边的三角形
Almost equilateral triangles It is easily proved that no equilateral triangle exists with integral l ...
- Project Euler 91:Right triangles with integer coordinates 格点直角三角形
Right triangles with integer coordinates The points P (x1, y1) and Q (x2, y2) are plotted at integer ...
随机推荐
- ICPC青岛站网络赛-C-高效模拟
嗯这道辣鸡题,当时我队友写了错误的代码,我稍微改动了,思路基本上是对了,但是就是超时,我第一直觉是我这个算法思路是没有任何问题的,但是就是TLE,我感觉这个算法已经优化的不能再优化了啊...后面就怀疑 ...
- 软工网络15团队作业8——Beta阶段敏捷冲刺
Deadline: 2018-5-31 22:00PM,以博客提交至班级博客时间为准 根据以下要求: (1)在敏捷冲刺前发布一篇博客,作为beta版敏捷冲刺的开始, (2)同时,团队在日期区间[5.2 ...
- 【问题解决方案】从 Anaconda Prompt 或 Jupyter Notebook 终端进入Python后重新退出到命令状态
从 Anaconda Prompt 或 Jupyter Notebook 终端进入Python后重新退出到命令状态 退出Python:exit() 或者 Ctrl+z 例子一枚 默认打开的是3.7,需 ...
- Memcache之安装篇
本篇文章会介绍memcache在Windows和Linux下的具体安装过程,详细的记录其中的流程内容,帮助小伙伴们快速的搭建起memcache服务,废话少说,直接上!!! Windows: Memca ...
- 小程序wepy.js框架总结
wepy.js借鉴了Vue的语法风格和功能特性,对官方提供的框架进行了封装,更贴近于MVVM架构模式,让开发者更加容易上手,增加开发效率.(脏数据处理--是否有标识.是否有响应) 前端开发的对组件化开 ...
- Go To Oracle
1.下载mingw (gcc 编译)---win32 2.下载OCI最新版,存放于C:\instantclient_12_1 ---win32 3.下载OCI SDK最新版,存放于C:\ins ...
- K3CLOUD常用数据表
一.数据库查询常用表 --查询数据表select * from ( select convert(varchar(4000),t1.FKERNELXML.query('//TableName')) a ...
- ajax设置默认值ajaxSetup()方法
$(function(){ //设置全局 jQuery Ajax全局参数 $.ajaxSetup({ type:"POST", async:false, cache:false, ...
- cookie路径概念理解
.创建一个cookie并设置 cookie的有效路径: $.cookie('the_cookie', 'the_value', { expires: 7, path: '/' }); 注:在默认情况下 ...
- MySQL的备份和回复
一.备份的原因 二.备份的类型 三.备份的方式 四.备份策略 五.备份工具