BZOJ4712洪水——动态DP+树链剖分+线段树
题目描述
输入
输入文件第一行包含一个数n,表示树的大小。
输出
对于每次询问操作,输出对应的答案,答案之间用换行隔开。
样例输入
4 3 2 1
1 2
1 3
4 2
4
Q 1
Q 2
C 4 10
Q 1
样例输出
1
4

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll v[200010];
ll g[200010];
ll f[200010];
int tot;
int n,m;
int head[200010];
int next[400010];
int to[400010];
int son[200010];
int top[200010];
int fa[200010];
int bot[200010];
int size[200010];
int s[200010];
int pos[200010];
int q[200010];
int num;
int x,y;
ll z;
char ch[3];
struct miku
{
ll sum;
ll mn;
}t[800010];
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x)
{
size[x]=1;
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa[x])
{
fa[to[i]]=x;
dfs(to[i]);
size[x]+=size[to[i]];
if(size[to[i]]>size[son[x]])
{
son[x]=to[i];
}
}
}
}
void dfs2(int x,int tp)
{
s[x]=++num;
q[num]=x;
f[x]=v[x];
top[x]=tp;
if(son[x])
{
dfs2(son[x],tp);
bot[x]=bot[son[x]];
}
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa[x]&&to[i]!=son[x])
{
dfs2(to[i],to[i]);
g[x]+=f[to[i]];
}
}
if(!son[x])
{
bot[x]=x;
}
else
{
f[x]=min(f[x],g[x]+f[son[x]]);
}
}
void pushup(int rt)
{
int ls=rt<<1;
int rs=rt<<1|1;
t[rt].sum=t[ls].sum+t[rs].sum;
t[rt].mn=min(t[ls].sum+t[rs].mn,t[ls].mn);
}
void build(int rt,int l,int r)
{
if(l==r)
{
int x=q[l];
pos[x]=rt;
t[rt].sum=g[x];
t[rt].mn=v[x];
return ;
}
int mid=(l+r)>>1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
pushup(rt);
}
void updata(int x)
{
int rt=pos[x]>>1;
while(rt)
{
pushup(rt);
rt>>=1;
}
}
miku query(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
{
return t[rt];
}
miku ls,rs,res;
int mid=(l+r)>>1;
if(L>mid)
{
return query(rt<<1|1,mid+1,r,L,R);
}
else if(R<=mid)
{
return query(rt<<1,l,mid,L,R);
}
else
{
ls=query(rt<<1,l,mid,L,R);
rs=query(rt<<1|1,mid+1,r,L,R);
res.sum=ls.sum+rs.sum;
res.mn=min(ls.sum+rs.mn,ls.mn);
return res;
}
}
void change(int x,ll val)
{
int now=x;
while(x)
{
ll cnt=query(1,1,n,s[top[x]],s[bot[x]]).mn;
if(x==now)
{
t[pos[x]].mn+=val;
updata(x);
}
else
{
t[pos[x]].sum+=val;
updata(x);
}
val=query(1,1,n,s[top[x]],s[bot[x]]).mn-cnt;
x=fa[top[x]];
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld",&v[i]);
}
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs(1);
dfs2(1,1);
build(1,1,n);
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%s",ch);
if(ch[0]=='C')
{
scanf("%d%lld",&x,&z);
change(x,z);
}
else
{
scanf("%d",&x);
printf("%lld\n",query(1,1,n,s[x],s[bot[x]]).mn);
}
}
}
BZOJ4712洪水——动态DP+树链剖分+线段树的更多相关文章
- 【bzoj4712】洪水 树链剖分+线段树维护树形动态dp
题目描述 给出一棵树,点有点权.多次增加某个点的点权,并在某一棵子树中询问:选出若干个节点,使得每个叶子节点到根节点的路径上至少有一个节点被选择,求选出的点的点权和的最小值. 输入 输入文件第一行包含 ...
- 【bzoj5210】最大连通子块和 树链剖分+线段树+可删除堆维护树形动态dp
题目描述 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块和. 其中,一棵子树的最大连通子块和指的是:该子树 ...
- 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点
题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...
- BZOJ 3589 动态树 (树链剖分+线段树)
前言 众所周知,90%90\%90%的题目与解法毫无关系. 题意 有一棵有根树,两种操作.一种是子树内每一个点的权值加上一个同一个数,另一种是查询多条路径的并的点权之和. 分析 很容易看出是树链剖分+ ...
- B20J_3231_[SDOI2014]旅行_树链剖分+线段树
B20J_3231_[SDOI2014]旅行_树链剖分+线段树 题意: S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,城市信仰不同的宗教,为了方便,我们用不同的正整数代表各种宗教. S国 ...
- BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)
前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
- POJ3237 (树链剖分+线段树)
Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...
随机推荐
- 朱晔和你聊Spring系列S1E10:强大且复杂的Spring Security(含OAuth2三角色+三模式完整例子)
Spring Security功能多,组件抽象程度高,配置方式多样,导致了Spring Security强大且复杂的特性.Spring Security的学习成本几乎是Spring家族中最高的,Spr ...
- 编剧小记 — Contour
前言 Contour 是一款比较优秀的编剧辅助软件,按理说这篇文章应该归类到mac小记中,但其操作非常简单,基本上以写作提示为主.只怪所有提示都是英语,而且很多,每次使用打开 Contour 个别单词 ...
- @RequestBody ajax 415 400
使用springmvc和Ajax进行数据交互时使用标签@RequestBody时我报了这两个错,刚开始对springmvc的使用和注解有点迷,然后踩坑上了. 先说下怎么才会踩上去.首先@Request ...
- 这款APP太像微信 腾讯起诉索赔1000万
去年8月,“币应”(inChat)APP上线,号称是一款原创的区块链加密通讯工具,而界面与微信极为相似,图标是白配绿色调,内部界面几乎一模一样,通讯录.朋友圈的界面完全相同.里面的小游戏,也从微信拿来 ...
- Accordion CodeForces - 1101B (实现)
An accordion is a string (yes, in the real world accordions are musical instruments, but let's forge ...
- Minimal string CodeForces – 797C
题目链接 题目难度: 1700rating 题目类型:string+贪心+STL 题目思路: 由于题目要求的最终结果是字典序最小的那个字符串,那么我们从贪心的从’a’开始查找字符串里是否存在,如果存在 ...
- pandas数据的分组与分列
读入数据: 数据分组:我们可以看到num这列它的数字在0-20之间变化,我们可以对其增加一列,用来对其分组 df['新增一列的名称']=pd.cut(df['要分组的列'],要分组的区间,新增一列后 ...
- PHP中多个文件包含的问题 (二)
首先php中有常用的两种方法将文件包含:include和require,而include_once和require_once无非就是升级版而已,这里就不阐述他们的区别,我只提一下我遇到的问题: 先看一 ...
- 认识Debian
Debian -- 通用操作系统https://www.debian.org/ DebianStretch - Debian Wikihttps://wiki.debian.org/DebianStr ...
- Android下的软件合集
在平常使用Android手机的时候,选择一个好的软件可以做到事半功倍的效果,所以在此总结一下,加速我们的工作与生活效率 1) ConnectBot ConnectBot是一个Android操作系统上的 ...