【BZOJ2137】submultiple(数论)
【BZOJ2137】submultiple(数论)
题面
题解
首先不难发现答案就是:\(\displaystyle\prod_{i=1}^n (\sum_{j=1}^{p_i+1}j^k)\)。
数据范围给定了。
发现对于\(p_i\)很小的时候,可以直接用快速幂预处理出来,这样子可以做到\(O(n+max(p)*logk)\)的复杂度。
对于\(p\)很大,\(k\)很小的点,不难知道自然数幂和是一个多项式,带几项进去拉格朗日插值或者第二类斯特林数或者带几项高斯消元或者伯努利数或者打表都行。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MOD 1000000007
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int n,K,mx,ans=1,P[100100];
namespace Task1
{
int f[100100];
void Solve()
{
for(int i=1;i<=mx;++i)f[i]=(f[i-1]+fpow(i,K))%MOD;
for(int i=1;i<=n;++i)ans=1ll*ans*f[P[i]]%MOD;
}
}
namespace Task2
{
int b[50],a[50],p[50];
void pre()
{
for(int i=1;i<=K+2;++i)p[i]=(p[i-1]+fpow(i,K))%MOD;b[0]=1;
for(int i=0;i<=K+1;++i)
{
for(int j=i+1;j;--j)b[j]=(b[j-1]+MOD-1ll*b[j]*(i+1)%MOD)%MOD;
b[0]=1ll*b[0]*(MOD-i-1)%MOD;
}
for(int i=0;i<=K+1;++i)
{
int s=p[i+1],inv=fpow(i+1,MOD-2);
for(int j=0;j<=K+1;++j)if(i!=j)s=1ll*s*fpow((i-j+MOD)%MOD,MOD-2)%MOD;
b[0]=1ll*b[0]*(MOD-inv)%MOD;
for(int j=1;j<=K+2;++j)b[j]=(MOD-1ll*(b[j]+MOD-b[j-1])*inv%MOD)%MOD;
for(int j=0;j<=K+2;++j)a[j]=(a[j]+1ll*s*b[j])%MOD;
for(int j=K+2;j;--j)b[j]=(b[j-1]+MOD-1ll*b[j]*(i+1)%MOD)%MOD;
b[0]=1ll*b[0]*(MOD-i-1)%MOD;
}
}
int S(int n)
{
int ret=0;
for(int i=0,nw=1;i<=K+1;++i,nw=1ll*nw*n%MOD)
ret=(ret+1ll*a[i]*nw)%MOD;
return ret;
}
void Solve()
{
pre();
for(int i=1;i<=n;++i)ans=1ll*ans*S(P[i])%MOD;
}
}
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)mx=max(mx,P[i]=read()%MOD+1);
if(mx<=100000)Task1::Solve();
else Task2::Solve();
printf("%d\n",ans);
return 0;
}
【BZOJ2137】submultiple(数论)的更多相关文章
- BZOJ2137: submultiple(生成函数,二项式定理)
Description 设函数g(N)表示N的约数个数.现在给出一个数M,求出所有M的约数x的g(x)的K次方和. Input 第一行输入N,K.N表示M由前N小的素数组成.接下来N行,第i+1行有一 ...
- 【BZOJ2137】submultiple 高斯消元求伯努利数
[BZOJ2137]submultiple Description 设函数g(N)表示N的约数个数.现在给出一个数M,求出所有M的约数x的g(x)的K次方和. Input 第一行输入N,K.N表示M由 ...
- 题解 「BZOJ2137」submultiple
题目传送门 题目大意 给出 \(M,k\) ,求出 \[\sum_{x|M}\sigma(x)^k \] 给出 \(P_i\),满足 \(n=\prod_{i=1}^{n}a_i^{P_i}\),其中 ...
- Codeforces Round #382 Div. 2【数论】
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...
- NOIP2014 uoj20解方程 数论(同余)
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...
- 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)
~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- bzoj2219: 数论之神
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
随机推荐
- sql 查询优化小计
好久没更博了,偷偷的抽时间写一下. 早上开始working的时候,发现一个页面加载很慢,经排查是昨天写的一条联合查询的sql导致的.于是着手优化! 首先想到的是在join的时候,减少表体积之后再进行关 ...
- TCP粘包问题解析与解决
一.粘包分析 作者本人在写一个FTP项目时,在文件的上传下载模块遇到了粘包问题.在网上找了一些解决办法,感觉对我情况都不好用,因此自己想了个比较好的解决办法,提供参考 1.1 粘包现象 在客户端与服务 ...
- Python“Non-ASCII character 'xe5' in file”报错问题
今天在编译一个Python程序的时候,一直出现“Non-ASCII character 'xe5' in file”报错问题 SyntaxError: Non-ASCII character '\xe ...
- Vue使用的一些实例
1.实现歌曲的点击切换. <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...
- jmeter之批量修改请求路径
今天工作时碰到一个问题:测试环境中由于tomcat没指定webapps下的文件夹名,导致tomcat使用了webapps下默认的文件夹名,而我的jmeter脚本都已经做出来了,一共83个接口,挨个改路 ...
- vue-router的简单实现原理
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Oracle 表分区(Partition)
表分区功能能够改善应用程序性能,提高数据库可管理性和可用性,是数据库管理非常关键的技术.数据库通过使用分区提高查询性能,简化日常管理维护工作. 1 分区优点 1) 减少维护工作量,独立管理每个表分区比 ...
- C# Note18: 使用wpf制作about dialog(关于对话框)
前言 基本上任何software或application都会在help菜单中,有着一个关于对话框,介绍产品的版权.版本等信息,还有就是对第三方的引用(add author credits). 首先,看 ...
- 不使用DataContext直接将ViewModels绑定到ItemsControl控件
在常规的MVVM设计模式中,都是通过DataContext将ViewModels的一个对象绑定到View的DataContext中,从而完成相应地绑定,在本文中我们将通过另外的一种思路来将ViewMo ...
- python 字符串常用操作方法
python 字符串常用操作方法 python 字符串操作常用操作,如字符串的替换.删除.截取.赋值.连接.比较.查找.分割等 1.去除空格 str.strip():删除字符串两边的指定字符,括号的写 ...