【BZOJ2137】submultiple(数论)
【BZOJ2137】submultiple(数论)
题面
题解
首先不难发现答案就是:\(\displaystyle\prod_{i=1}^n (\sum_{j=1}^{p_i+1}j^k)\)。
数据范围给定了。
发现对于\(p_i\)很小的时候,可以直接用快速幂预处理出来,这样子可以做到\(O(n+max(p)*logk)\)的复杂度。
对于\(p\)很大,\(k\)很小的点,不难知道自然数幂和是一个多项式,带几项进去拉格朗日插值或者第二类斯特林数或者带几项高斯消元或者伯努利数或者打表都行。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MOD 1000000007
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int n,K,mx,ans=1,P[100100];
namespace Task1
{
int f[100100];
void Solve()
{
for(int i=1;i<=mx;++i)f[i]=(f[i-1]+fpow(i,K))%MOD;
for(int i=1;i<=n;++i)ans=1ll*ans*f[P[i]]%MOD;
}
}
namespace Task2
{
int b[50],a[50],p[50];
void pre()
{
for(int i=1;i<=K+2;++i)p[i]=(p[i-1]+fpow(i,K))%MOD;b[0]=1;
for(int i=0;i<=K+1;++i)
{
for(int j=i+1;j;--j)b[j]=(b[j-1]+MOD-1ll*b[j]*(i+1)%MOD)%MOD;
b[0]=1ll*b[0]*(MOD-i-1)%MOD;
}
for(int i=0;i<=K+1;++i)
{
int s=p[i+1],inv=fpow(i+1,MOD-2);
for(int j=0;j<=K+1;++j)if(i!=j)s=1ll*s*fpow((i-j+MOD)%MOD,MOD-2)%MOD;
b[0]=1ll*b[0]*(MOD-inv)%MOD;
for(int j=1;j<=K+2;++j)b[j]=(MOD-1ll*(b[j]+MOD-b[j-1])*inv%MOD)%MOD;
for(int j=0;j<=K+2;++j)a[j]=(a[j]+1ll*s*b[j])%MOD;
for(int j=K+2;j;--j)b[j]=(b[j-1]+MOD-1ll*b[j]*(i+1)%MOD)%MOD;
b[0]=1ll*b[0]*(MOD-i-1)%MOD;
}
}
int S(int n)
{
int ret=0;
for(int i=0,nw=1;i<=K+1;++i,nw=1ll*nw*n%MOD)
ret=(ret+1ll*a[i]*nw)%MOD;
return ret;
}
void Solve()
{
pre();
for(int i=1;i<=n;++i)ans=1ll*ans*S(P[i])%MOD;
}
}
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)mx=max(mx,P[i]=read()%MOD+1);
if(mx<=100000)Task1::Solve();
else Task2::Solve();
printf("%d\n",ans);
return 0;
}
【BZOJ2137】submultiple(数论)的更多相关文章
- BZOJ2137: submultiple(生成函数,二项式定理)
Description 设函数g(N)表示N的约数个数.现在给出一个数M,求出所有M的约数x的g(x)的K次方和. Input 第一行输入N,K.N表示M由前N小的素数组成.接下来N行,第i+1行有一 ...
- 【BZOJ2137】submultiple 高斯消元求伯努利数
[BZOJ2137]submultiple Description 设函数g(N)表示N的约数个数.现在给出一个数M,求出所有M的约数x的g(x)的K次方和. Input 第一行输入N,K.N表示M由 ...
- 题解 「BZOJ2137」submultiple
题目传送门 题目大意 给出 \(M,k\) ,求出 \[\sum_{x|M}\sigma(x)^k \] 给出 \(P_i\),满足 \(n=\prod_{i=1}^{n}a_i^{P_i}\),其中 ...
- Codeforces Round #382 Div. 2【数论】
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...
- NOIP2014 uoj20解方程 数论(同余)
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...
- 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)
~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- bzoj2219: 数论之神
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
随机推荐
- hibernate 的sum(filed)引发的NullPointException错误解决过程
背景: 在用hql语句进行sum查询时遭遇NPE问题: StringBuilder builder = new StringBuilder("select SUM(actualWorking ...
- ElasticSearch聚合
前言 说完了ES的索引与检索,接着再介绍一个ES高级功能API – 聚合(Aggregations),聚合功能为ES注入了统计分析的血统,使用户在面对大数据提取统计指标时变得游刃有余.同样的工作,你在 ...
- iOS使用XZMRefresh实现UITableView或UICollectionView横向刷新
https://blog.csdn.net/u013285730/article/details/50615551?utm_source=blogxgwz6 XZMRefresh The easies ...
- 斐波那契数列yield表示
def fib(num): n=0 a,b=0,1 while n<num: print(b) yield a,b=b,a+b n=n+1a=fib(30)next(a)next(a)
- Java.lang.OutOfMemoryError:Metaspace
Understand the OutOfMemoryError Exceptionhttps://docs.oracle.com/javase/8/docs/technotes/guides/trou ...
- Javascript与C#对变量的处理方式
先来看一下Javascript的情况(下面所说的基本类型和简单类型是一个意思): Javascript中变量会存在两种情况,一种是基本类型的,一共有五种,有null.Bollean.undefin ...
- 2 Interrupting Appropriately
1 Interrupting someone politely e.g. Excuse me for interrupting, but may I ask a question? Sure. Of ...
- jenkins了解一下,讲一下jenkins这个鬼东西
一.jenkins是干什么的? jenkins是一个免费的集成工具,它是基于java开发的.用来做自动化部署,傻瓜化操作. 一般的项目部署流程: 开发代码——>功能测试——>打包(使用ma ...
- java 中Excel的导入导出
部分转发原作者https://www.cnblogs.com/qdhxhz/p/8137282.html雨点的名字 的内容 java代码中的导入导出 首先在d盘创建一个xlsx文件,然后再进行一系列 ...
- 《笔记》Apache2 mod_wsgi的配置
接手了一台古老的服务器的还使用的是mod_wsgi,所以需要配置一下.其实这里有点怀念,记得当年自己折腾第一个app的时候,还是个什么都不懂的菜鸡.当时用django搜方案的时候,还不知道有uwsgi ...