park submit参数介绍
你可以通过spark-submit --help或者spark-shell --help来查看这些参数。
 
使用格式: 
./bin/spark-submit \
  --class <main-class> \
  --master <master-url> \
  --deploy-mode <deploy-mode> \
  --conf <key>=<value> \
  ... # other options
  <application-jar> \
  [application-arguments]
 
 
参数名 格式 参数说明
--master MASTER_URL 如spark://host:port, mesos://host:port, yarn,  yarn-cluster,yarn-client, local
--deploy-mode DEPLOY_MODE Client或者master,默认是client
--class CLASS_NAME 应用程序的主类
--name NAME 应用程序的名称
--jars JARS 逗号分隔的本地jar包,包含在driver和executor的classpath下
--packages 包含在driver和executor的classpath下的jar包逗号分隔的”groupId:artifactId:version”列表
--exclude-packages 用逗号分隔的”groupId:artifactId”列表
--repositories 逗号分隔的远程仓库
--py-files PY_FILES 逗号分隔的”.zip”,”.egg”或者“.py”文件,这些文件放在python app的PYTHONPATH下面
--files FILES 逗号分隔的文件,这些文件放在每个executor的工作目录下面
--conf PROP=VALUE 固定的spark配置属性,默认是conf/spark-defaults.conf
--properties-file FILE 加载额外属性的文件
--driver-memory MEM Driver内存,默认1G
--driver-java-options 传给driver的额外的Java选项
--driver-library-path 传给driver的额外的库路径
--driver-class-path 传给driver的额外的类路径
--executor-memory MEM 每个executor的内存,默认是1G
--proxy-user NAME 模拟提交应用程序的用户
--driver-cores NUM Driver的核数,默认是1。这个参数仅仅在standalone集群deploy模式下使用
--supervise Driver失败时,重启driver。在mesos或者standalone下使用
--verbose 打印debug信息
--total-executor-cores NUM 所有executor总共的核数。仅仅在mesos或者standalone下使用
--executor-core NUM 每个executor的核数。在yarn或者standalone下使用
--driver-cores NUM Driver的核数,默认是1。在yarn集群模式下使用
--queue QUEUE_NAME 队列名称。在yarn下使用
--num-executors NUM 启动的executor数量。默认为2。在yarn下使用
 
 
试例:
# Run application locally on 8 cores(本地模式8核)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master local[8] \
  /path/to/examples.jar \
  100
 
# Run on a Spark standalone cluster in client deploy mode(standalone client模式)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000
 
# Run on a Spark standalone cluster in cluster deploy mode with supervise(standalone cluster模式使用supervise)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --deploy-mode cluster \
  --supervise \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000
 
# Run on a YARN cluster(YARN cluster模式)
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master yarn \
  --deploy-mode cluster \  # can be client for client mode
  --executor-memory 20G \
  --num-executors 50 \
  /path/to/examples.jar \
  1000
 
 
# Run on a Mesos cluster in cluster deploy mode with supervise(Mesos cluster模式使用supervise)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master mesos://207.184.161.138:7077 \
  --deploy-mode cluster \
  --supervise \
  --executor-memory 20G \
  --total-executor-cores 100 \
  http://path/to/examples.jar \
  1000
 
在公司使用最多的是spark on yarn模式,下面主要讲spark on yarn
 
 
资源参数调优
所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使用的效率,从而提升Spark作业的执行性能。
以下参数就是Spark中主要的资源参数,每个参数都对应着作业运行原理中的某个部分,我们同时也给出了一个调优的参考值。
 
num-executors
 
参数说明:
该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在
集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的
Spark作业的运行速度是非常慢的。
参数调优建议:
每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;
设置的太多的话,大部分队列可能无法给予充分的资源。
 
executor-memory
参数说明:
该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。
参数调优建议:
每个Executor进程的内存设置4G~8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列
的最大内存限制是多少,num-executors乘以executor-memory,是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,
那么申请的内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同学的作业无法运行。
 
executor-cores
参数说明:
该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个
task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。
参数调优建议:
Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的
Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过
队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同学的作业运行。
 
driver-memory
参数说明:
该参数用于设置Driver进程的内存。
参数调优建议:
Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,
那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。
 
spark.default.parallelism
参数说明:
该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。
参数调优建议:
Spark作业的默认task数量为500~1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量
来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会
导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的
Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍
较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。
 
spark.storage.memoryFraction
参数说明:
该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择
的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。
参数调优建议:
如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只
能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现
作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
 
spark.shuffle.memoryFraction
参数说明:
该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor
默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时
就会极大地降低性能。
参数调优建议:
如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多
时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低
这个参数的值。
 
资源参数的调优,没有一个固定的值,需要根据自己的实际情况(包括Spark作业中的shuffle操作数量、RDD持久化操作数量以及spark web ui中显示的作业gc情况),
合理地设置上述参数。
 
资源参数参考示例
以下是一份spark-submit命令的示例,大家可以参考一下,并根据自己的实际情况进行调节:
 
./bin/spark-submit \
  --master yarn-cluster \
  --num-executors 100 \
  --executor-memory 6G \
  --executor-cores 4 \
  --driver-memory 1G \
  --conf spark.default.parallelism=1000 \
  --conf spark.storage.memoryFraction=0.5 \
  --conf spark.shuffle.memoryFraction=0.3 \

spark submit参数及调优的更多相关文章

  1. spark submit参数及调优(转载)

    spark submit参数介绍 你可以通过spark-submit --help或者spark-shell --help来查看这些参数. 使用格式:  ./bin/spark-submit \ -- ...

  2. spark shuffle参数及调优建议(转)

    原文:http://www.cnblogs.com/arachis/p/Spark_Shuffle.html spark.shuffle.file.buffer 默认值:32k 参数说明:该参数用于设 ...

  3. Spark 常用参数及调优

    spark streaming 调优的几个角度: 高效地利用集群资源减少批数据的处理时间 设置正确的批容量(size),使数据的处理速度能够赶上数据的接收速度 内存调优 Spark SQL 可以通过调 ...

  4. Spark性能优化--开发调优与资源调优

    参考: https://tech.meituan.com/spark-tuning-basic.html https://zhuanlan.zhihu.com/p/22024169 一.开发调优 1. ...

  5. Spark面试题(八)——Spark的Shuffle配置调优

    Spark系列面试题 Spark面试题(一) Spark面试题(二) Spark面试题(三) Spark面试题(四) Spark面试题(五)--数据倾斜调优 Spark面试题(六)--Spark资源调 ...

  6. mysql的从头到脚优化之服务器参数的调优

    一. 说到mysql的调优,有许多的点可以让我们去做,因此梳理下,一些调优的策略,今天只是总结下服务器参数的调优  其实说到,参数的调优,我的理解就是无非两点: 如果是Innodb的数据库,innod ...

  7. 【原创 Hadoop&Spark 动手实践 8】Spark 应用经验、调优与动手实践

    [原创 Hadoop&Spark 动手实践 7]Spark 应用经验.调优与动手实践 目标: 1. 了解Spark 应用经验与调优的理论与方法,如果遇到Spark调优的事情,有理论思考框架. ...

  8. 阿里云下 centos7下启动程序总是被killed ,看内存占用情况以检查哪些服务存在问题并调整参数作调优

    很久不搭理自己的网站了,几天突然发现启动程序总是被killed, 于是查看了系统日志 vi /var/log/messages 发现出现 kernel: Out of memory: Kill pro ...

  9. RandomForest 随机森林算法与模型参数的调优

    公号:码农充电站pro 主页:https://codeshellme.github.io 本篇文章来介绍随机森林(RandomForest)算法. 1,集成算法之 bagging 算法 在前边的文章& ...

随机推荐

  1. PHP:产生不反复随机数的方法

    来源:http://www.ido321.com/1217.html 不管是Web应用,还是WAP或者移动应用,随机数都有其用武之地.在近期接触的几个小项目中.我也经常须要和随机数或者随机数组打交道, ...

  2. js的执行环境学习笔记

    js执行全局代码或者执行函数代码的时候,首先进行准备,然后再执行.准备阶段,就是创建执行环境的阶段. 1.执行环境 当一段js代码遇到解释器的时候,比如浏览器打开一段js代码时候,第一件事并不是马上执 ...

  3. 导弹拦截 dp

    n∗lognn*lognn∗logn写法,lis[i]的意义为:所有最长上升子序列长度为i的位置上的最小a数组元素值lis[i]的意义为:所有最长上升子序列长度为i的位置上的最小a数组元素值lis[i ...

  4. Min_25筛学习笔记

    感觉好好用啊 Luogu上的杜教筛模版题一发 Min_25抢到了 rank1 $ Updated \ on 11.29 $被 STO txc ORZ踩爆啦 前言 $ Min$_$25$筛可以求积性函数 ...

  5. 百度地图API的应用

    做网页的时候,有时候需要有地图的功能.接下来我来记录一下我的做法. 1.引入API秘钥,在网上都可以搜到. <script src="http://api.map.baidu.com/ ...

  6. CSL 的字符串(单调栈)

    题目链接:https://ac.nowcoder.com/acm/contest/551/D 题目大意: 题目描述 CSL 以前不会字符串算法,经过一年的训练,他还是不会……于是他打算向你求助. 给定 ...

  7. linux 备份与恢复

  8. Linux 脚本/脚本实现思路

  9. 求两个排序数组中位数 C++

    题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 你可以假设 nums1 和 nu ...

  10. android java 字符串正则表达式 分离特殊字符串

    Java中正则表达式的使用 在Java中,我们为了查找某个给定字符串中是否有需要查找的某个字符或者子字串.或者对字符串进行分割.或者对字符串一些字符进行替换/删除,一般会通过if-else.for 的 ...