GIL(全局解释器锁)

GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念,是为了实现不同线程对共享资源访问的互斥,才引入了GIL

在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势

python对于计算密集型的任务开多线程的效率甚至不如串行(没有大量切换),但是,对于IO密集型的任务效率还是有显著提升的。

GIL原理图

计算密集型:结果肯定是100,因为每一次start结果就已经出来了,所以第二个线程肯定是通过调用第一个线程的count值进行计算的

 1 def sub():
2 global count
3
4 '''线程的公共数据 下'''
5 temp=count
6 count=temp+1
7 '''线程的公共数据 上'''
8
9 time.sleep(2)
10 count=0
11
12 l=[]
13 for i in range(100):
14 t=threading.Thread(target=sub,args=())
15 t.start()  #每一次线程激活,申请一次gillock
16 l.append(t)
17 for t in l:
18 t.join()
19 print(count)

io密集型:当第一个线程开始start的时候,由于sleep了0.001秒,这0.001秒对于人而言很短,但是对于cpu而言,这0.001秒已经做了很多的事情了,在这里cpu做的事情就是或许已经start了100个线程,所以导致大多数的线程调用的count值还是0,即temp=0,只有少数的线程完成了count=temp+1的操作,所以输出的count结果不确定,可能是7、8、9,也可能是10几。

 1 def sub():
2 global count
3
4 '''线程的公共数据 下'''
5 temp=count
6 time.sleep(0.001) #大量的io操作
7 count=temp+1
8 '''线程的公共数据 上'''
9
10 time.sleep(2)
11 count=0
12
13 l=[]
14 for i in range(100):
15 t=threading.Thread(target=sub,args=())
16 t.start()
17 l.append(t)
18 for t in l:
19 t.join()
20 print(count)

注意以下的锁都是多线程提供的锁机制,与python解释器引入的gil概念无关

互斥锁(同步锁)

互斥锁是用来解决上述的io密集型场景产生的计算错误,即目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据。

 1 def sub():
2 global count
3 lock.acquire() #上锁,第一个线程如果申请到锁,会在执行公共数据的过程中持续阻塞后续线程
4 #即后续第二个或其他线程依次来了发现已经被上锁,只能等待第一个线程释放锁
5 #当第一个线程将锁释放,后续的线程会进行争抢
6
7 '''线程的公共数据 下'''
8 temp=count
9 time.sleep(0.001)
10 count=temp+1
11 '''线程的公共数据 上'''
12
13 lock.release() #释放锁
14 time.sleep(2)
15 count=0
16
17 l=[]
18 lock=threading.Lock() #将锁内的代码串行化
19 for i in range(100):
20 t=threading.Thread(target=sub,args=())
21 t.start()
22 l.append(t)
23 for t in l:
24 t.join()
25 print(count)

死锁

保护不同的数据就应该加不同的锁。

所以当有多个互斥锁存在的时候,可能会导致死锁,死锁原理如下:

 1 import threading
2 import time
3 def foo():
4 lockA.acquire()
5 print('func foo ClockA lock')
6 lockB.acquire()
7 print('func foo ClockB lock')
8 lockB.release()
9 lockA.release()
10
11 def bar():
12
13 lockB.acquire()
14 print('func bar ClockB lock')
15 time.sleep(2) # 模拟io或者其他操作,第一个线程执行到这,在这个时候,lockA会被第二个进程占用
16 # 所以第一个进程无法进行后续操作,只能等待lockA锁的释放
17 lockA.acquire()
18 print('func bar ClockA lock')
19 lockB.release()
20 lockA.release()
21
22 def run():
23 foo()
24 bar()
25
26 lockA=threading.Lock()
27 lockB=threading.Lock()
28 for i in range(10):
29 t=threading.Thread(target=run,args=())
30 t.start()
31
32 输出结果:只有四行,因为产生了死锁阻断了
33 func foo ClockA lock
34 func foo ClockB lock
35 func bar ClockB lock
36 func foo ClockA lock

递归锁(重要)

解决死锁

 1 import threading
2 import time
3 def foo():
4 rlock.acquire()
5 print('func foo ClockA lock')
6 rlock.acquire()
7 print('func foo ClockB lock')
8 rlock.release()
9 rlock.release()
10
11 def bar():
12 rlock.acquire()
13 print('func bar ClockB lock')
14 time.sleep(2)
15 rlock.acquire()
16 print('func bar ClockA lock')
17 rlock.release()
18 rlock.release()
19
20
21 def run():
22 foo()
23 bar()
24
25 rlock=threading.RLock() #RLock本身有一个计数器,如果碰到acquire,那么计数器+1
26 #如果计数器大于0,那么其他线程无法查收,如果碰到release,计数器-1
27
28 for i in range(10):
29 t=threading.Thread(target=run,args=())
30 t.start()

Semaphore(信号量)

实际上也是一种锁,该锁用于限制线程的并发量

以下代码在sleep两秒后会打印出100个ok

1 import threading
2 import time
3 def foo():
4 time.sleep(2)
5 print('ok')
6
7 for i in range(100):
8 t=threading.Thread(target=foo,args=())
9 t.start()

每2秒打印5次ok

 1 import threading
2 import time
3 sem=threading.Semaphore(5)
4 def foo():
5 sem.acquire()
6 time.sleep(2)
7 print('ok')
8 sem.release()
9
10 for i in range(100):
11 t=threading.Thread(target=foo,args=())
12 t.start()

python 多线程锁机制的更多相关文章

  1. Python多线程锁

    [Python之旅]第六篇(四):Python多线程锁   python lock 多线程 多线程使用方法 多线程锁 摘要:   在多线程程序执行过程中,为什么需要给一些线程加锁以及如何加锁,下面就来 ...

  2. python基础之多线程锁机制

    GIL(全局解释器锁) GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念,是为了实现不同线程对共享资源访问的互斥,才引入了GIL 在Cpython解释器 ...

  3. Python开发基础-Day30多线程锁机制

    GIL(全局解释器锁) GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念,是为了实现不同线程对共享资源访问的互斥,才引入了GIL 在Cpython解释器 ...

  4. [java多线程] - 锁机制&同步代码块&信号量

    在美眉图片下载demo中,我们可以看到多个线程在公用一些变量,这个时候难免会发生冲突.冲突并不可怕,可怕的是当多线程的情况下,你没法控制冲突.按照我的理解在java中实现同步的方式分为三种,分别是:同 ...

  5. python多线程同步机制Semaphore

    #!/usr/bin/env python # -*- coding: utf-8 -*- """ Python 线程同步机制:Semaphore "" ...

  6. Python高阶之多线程锁机制

    '''1.多进程的优势:为了同步完成多项任务,通过提高资源使用效率来提高系统的效率.2.查看线程数:threading.enumerate()函数便可以看到当前线程的数量.3.查看当前线程的名字:th ...

  7. python多线程同步机制condition

    #!/usr/bin/env python# -*- coding: utf-8 -*- import threadingimport time def customer(cond): t = thr ...

  8. python多线程同步机制Lock

    #!/usr/bin/env python# -*- coding: utf-8 -*- import threadingimport time value = 0lock = threading.L ...

  9. python多线程锁lock/Rlock/BoundedSemaphore/Condition/Event

    import time import threading lock = threading.RLock() n = 10 def task(arg): # 加锁,此区域的代码同一时刻只能有一个线程执行 ...

随机推荐

  1. NIO(一)

    1.NIO是什么? 是JDK1.4之后推出的一个新的IO操作(netty.mina通讯框架的底层都是NIO实现的连接) 2.NIO和IO的区别(阻塞只会出现在网络通讯中,都是同步) NIO:非阻塞类型 ...

  2. Wireless Penetration Testing(7-11 chapter)

    1.AP-less WPA-Personal cracking 创建一个honeypoint  等待链接,特点在于不需要攻击致使链接的客户端掉线,直接获取了流量的握手包. 2.Man-in-the-M ...

  3. 分布式事务XA

    1.什么是分布式事务 分布式事务就是指事务的参与者.支持事务的服务器.资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上.以上是百度百科的解释,简单的说,就是一次大的操作由不同的小操作组成 ...

  4. StackService.Redis 应用

    如今StackService.Redis已经转向商业版本.4.0以下的低版本依然免费和开源. 吴双,Redis系列命令拾遗分享 http://www.cnblogs.com/tdws/tag/NoSq ...

  5. Elasticsearch 备忘

    Elasticsearch7.0版本在查询时需要增加 “track_total_hits”:true 来强制进行准确的计数,默认为 “track_total_hits”:10000, 而且返回的hit ...

  6. mysql 查询结果中增加序号

    ) as rownum,person_id from t_base_person

  7. C# 会话,进程,线程,线程安全

    会话->进程->线程 b/s网站中,每个用户的访问为一次会话,会话中包含CPU为用户在内存中开辟空间存储的会话信息, 如Session,进程,会话拥有一个进程,同一进程下可以拥有多个线程. ...

  8. functiontools模块

    #!/usr/bin/env python# -*- coding:utf-8 -*-from functools import cmp_to_key a = [1, 6, 4, 5]a.sort(k ...

  9. 导出CSV乱码

    导出CSV,无论是什么格式,excel打卡都是乱码 需要加上 echo "\xEF\xBB\xBF"; header("Content-Disposition:attac ...

  10. alpha冲刺8/10

    目录 摘要 团队部分 个人部分 摘要 队名:小白吃 组长博客:hjj 作业博客:冲刺倒计时之8 团队部分 后敬甲(组长) 过去两天完成了哪些任务 首页重新设计 课程时间线确定 答辩准备 接下来的计划 ...