嘟嘟嘟




对于这种找规律的题,我向来是不会的。




通过大佬们的各种打表找规律、神奇dp等方法,我们得到了答案就是\(\lfloor \frac{2 ^ {n + 1}}{3} \rfloor\)。

高精是显然的,但是还得用fft,毕竟这是省选题。




刚开始我一运行就RE,都不让你输入,后来才发现是数组开到1e6太大了(这怎么就大了!?)

其次别忘了高精里面的数都是倒着存的,所以做除法的时候得倒着来,最后再把数组倒过来。

然后高精fft借鉴了一下兔哥的代码,把原来的代码简化了许多。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const db PI = acos(-1);
const int maxn = 1e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int rev[maxn];
struct Comp
{
db x, y;
In Comp operator + (const Comp& oth)const
{
return (Comp){x + oth.x, y + oth.y};
}
In Comp operator - (const Comp& oth)const
{
return (Comp){x - oth.x, y - oth.y};
}
In Comp operator * (const Comp& oth)const
{
return (Comp){x * oth.x - y * oth.y, x * oth.y + y * oth.x};
}
friend In void swap(Comp& a, Comp& b)
{
swap(a.x, b.x); swap(a.y, b.y);
}
}; In void fft(Comp* a, int len, int flg)
{
for(int i = 0; i < len; ++i) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int i = 1; i < len; i <<= 1)
{
Comp omg = (Comp){cos(PI / i), sin(PI / i) * flg};
for(int j = 0; j < len; j += (i << 1))
{
Comp o = (Comp){1, 0};
for(int k = 0; k < i; ++k, o = o * omg)
{
Comp tp1 = a[k + j], tp2 = a[k + j + i] * o;
a[k + j] = tp1 + tp2, a[k + j + i] = tp1 - tp2;
}
}
}
} struct Big
{
int a[maxn], len;
In void init() {Mem(a, 0); len = 0;}
In Big operator * (const Big& oth)const
{
static Comp A[maxn], B[maxn];
int Len = 1, lim = 0;
while(Len < len + oth.len - 1) Len <<= 1, ++lim;
for(int i = 0; i < Len; ++i)
{
A[i] = (Comp){i < len ? a[i] : 0, 0}; //这个很重要
B[i] = (Comp){i < oth.len ? oth.a[i] : 0, 0};
}
for(int i = 0; i < Len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lim - 1));
fft(A, Len, 1); fft(B, Len, 1);
for(int i = 0; i < Len; ++i) A[i] = A[i] * B[i];
fft(A, Len, -1);
static Big ret; ret.init(); ret.len = len + oth.len - 1;
for(int i = 0; i < ret.len; ++i) ret.a[i] = (int)(A[i].x / Len + 0.5);
for(int i = 0; i < ret.len; ++i) ret.a[i + 1] += ret.a[i] / 10, ret.a[i] %= 10;
if(ret.a[ret.len]) ++ret.len; //因为最多只会进一位,所以就不用while啦
return ret;
}
In Big operator / (int x)
{
static Big ret; ret.init();
for(int i = len - 1, tp = 0; i >= 0; --i)
{
tp = tp * 10 + a[i];
if(ret.len) ret.a[ret.len++] = tp / x;
else if(tp >= x) ret.a[ret.len++] = tp / x;
tp %= x;
}
reverse(ret.a, ret.a + ret.len);
return ret;
}
In void out()
{
for(int i = len - 1; i >= 0; --i) write(a[i]);
}
}A, ret; int main()
{
int T = read();
while(T--)
{
int n = read() + 1;
A.init(); ret.init();
A.len = ret.len = 1;
A.a[0] = 2; ret.a[0] = 1;
for(; n; n >>= 1, A = A * A)
if(n & 1) ret = ret * A;
ret = ret / 3;
ret.out(), enter;
}
return 0;
}

[CQOI2018]九连环的更多相关文章

  1. 【BZOJ5300】[CQOI2018]九连环 (高精度,FFT)

    [BZOJ5300][CQOI2018]九连环 (高精度,FFT) 题面 BZOJ 洛谷 题解 去这里看吧,多么好 #include<iostream> #include<cstdi ...

  2. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  3. # BZOJ5300 [CQOI2018]九连环 题解 | 高精度 FFT

    今天做了传说中的CQOI六道板子题--有了一种自己很巨的错觉(雾 题面 求n连环的最少步数,n <= 1e5. 题解 首先--我不会玩九连环-- 通过找规律(其实是百度搜索)可知,\(n\)连环 ...

  4. BZOJ5300:[CQOI2018]九连环——题解

    一种打表的方法,适用于知道如何解九连环的人. 我们知道,解九(n)连环必须先解第九(n)环,然后解八(n-1).七(n-2)-- 根据这个我们飞快的写出了一个递推式,设\(f[i]\)为\(i\)连环 ...

  5. BZOJ5300 [Cqoi2018]九连环 【数学】【FFT】

    题目分析: 这道题是数学必修五的原题,做法如下图,书上讲得很详细了. 那么这道题目用快速幂就可以解决了,值得注意的是,分析时间复杂度会发现直接做乘法其实是O(n^2)的,但是有一个1/20左右的常数, ...

  6. 2019.01.02 bzoj5300: [Cqoi2018]九连环(fft优化高精+快速幂)

    传送门 题意不好描述(自己看样例解释) 首先可以推出一个递推式:fn=fn−1+2fn−2+1f_n=f_{n-1}+2f_{n-2}+1fn​=fn−1​+2fn−2​+1 然后可以构造两个等式: ...

  7. BZOJ5300 [Cqoi2018]九连环 【dp + 高精】

    题目链接 BZOJ5300 题解 这题真的是很丧病,,卡高精卡到哭 我们设\(f[i]\)表示卸掉前\(i\)个环需要的步数 那么 \[f[i] = 2*f[i - 2] + f[i - 1] + 1 ...

  8. P4461 [CQOI2018]九连环

    思路:\(DP\) 提交:\(2\)次 错因:高精写挂(窝太菜了) 题解: 观察可知\(f[i]=2*f[i-1]+(n\&1)\) 高精的过程参考了WinXP@luogu的思路: 发现一个问 ...

  9. yyb省选前的一些计划

    突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...

随机推荐

  1. Go开发之路 -- 时间和日期类型

    time包 time.Time类型, 用来表示时间 获取当前时间, now := time.Now() time.Duration() 用来表示纳秒 时间类型的格式化 now := time.Now( ...

  2. js 金额补全处理

    function returnFloat(value) { var value = Math.round(parseFloat(value) * 100) / 100; var xsd = value ...

  3. 一句SQL完成动态分级查询

    在最近的活字格项目中使用ActiveReports报表设计器设计一个报表模板时,遇到一个多级分类的难题:需要将某个部门所有销售及下属部门的销售金额汇总,因为下属级别的层次不确定,所以靠拼接子查询的方式 ...

  4. redis redis常用命令及内存分析总结(附RedisClient工具简介

    redis常用命令及内存分析总结(附RedisClient工具简介 by:授客 QQ:1033553122 redis-cli工具 查看帮助 连接redis数据库 常用命令 exists key se ...

  5. wap2app(八)-- iphoneX 底部导航的兼容问题

    iphoneX 没有home键,用其打开应用时,iphoneX的底部和应用底部导航重叠,不兼容. 解决办法: 打开manifest.json文件,在“plus”下加入以下代码(安全区域): " ...

  6. SpringBoot-学习笔记

    启动方式 运行main方法 @SpringBootApplication public class BootApplication { public static void main(String[] ...

  7. (网页)sweetalert api 中文开发文档和手册,项目放弃alert

    弹框json的特别好使. sweetalert 示例 基本信息弹窗swal("这是一条信息!") 标题与文本的信息弹窗swal("这是一条信息!", " ...

  8. vue自定义一个v-model

    目标 js <template> <my-form v-model="form"> </my-form> </template> & ...

  9. zabbix监控自动发现监控tomcat(V1)

    背景说明: 由于zabbix监控使用自带的模版,只能监控主机上只有1个tomcat的场景适合,虽然网上很多朋友都是在每个监控项上面添加一个空格来解决问题.但是个人感觉这种方法还是蛮麻烦的,所以写一篇使 ...

  10. c#qq发邮件

    // SMTP(Simple Mail Transport Protocol)简单邮件传输协议.在.NET Frameword类库中提供SmtpClient类(System.Net.Mail),她提供 ...