CF285E Positions in Permutations(dp+容斥)
题意,给定n,k,求有多少排列是的 | p[i]-i |=1 的数量为k。
Solution
直接dp会有很大的后效性。
所以我们考虑固定k个数字使得它们是合法的,所以我们设dp[i][j][0/1][0/1]表示前i个数,填了j个数,当前位置有没有被选,下一位有没有被选,这样做的话,转移会比较简单。
那么除去这j个数,剩下的数随便填,乘上全排列就好了。
但这样会多算。
然后这种问题有一个容斥模型,直接套上就好了。
#include<iostream>
#include<cstdio>
#define N 1002
using namespace std;
typedef long long ll;
int n,k;
ll dp[N][N][][],jie[N],ni[N],g[N],ans;
const int mod=1e9+;
ll calc(int n,int m){
return jie[n]*ni[m]%mod*ni[n-m]%mod;
}
ll power(ll x,int y){
ll ans=;
while(y){
if(y&)(ans*=x)%=mod;
(x*=x)%=mod;
y>>=;
}
return ans;
}
int main(){
scanf("%d%d",&n,&k);jie[]=;
for(int i=;i<=n;++i)jie[i]=(jie[i-]*i)%mod;ni[n]=power(jie[n],mod-);
for(int i=n-;i>=;--i)ni[i]=ni[i+]*(i+)%mod;
dp[][][][]=;
for(int i=;i<=n;++i){
for(int j=;j<=n;++j){
dp[i][j][][]=(dp[i-][j][][]+dp[i-][j][][])%mod;
dp[i][j][][]=(dp[i-][j][][]+dp[i-][j][][])%mod;
if(j){
(dp[i][j][][]+=dp[i-][j-][][])%=mod;
dp[i][j][][]+=(dp[i-][j-][][]+dp[i-][j-][][])%mod;
dp[i][j][][]%=mod;
(dp[i][j][][]+=dp[i-][j-][][])%=mod;
dp[i][j][][]+=(dp[i-][j-][][]+dp[i-][j-][][])%mod;
dp[i][j][][]%=mod;
}
}
}
for(int i=k;i<=n;++i)
g[i]=(dp[n][i][][]+dp[n][i][][])%mod*jie[n-i]%mod;
for(int i=k;i<=n;++i)(ans+=(((i-k)&)?-:)*calc(i,k)*g[i]%mod+mod)%=mod;
ans=(ans+mod)%mod;
cout<<ans;
return ;
}
CF285E Positions in Permutations(dp+容斥)的更多相关文章
- 【做题】CF285E. Positions in Permutations——dp+容斥
题意:求所有长度为\(n\)的排列\(p\)中,有多少个满足:对于所有\(i \,(1 \leq i \leq n)\),其中恰好有\(k\)个满足\(|p_i - i| = 1\).答案对\(10^ ...
- 【CF715E】Complete the Permutations(容斥,第一类斯特林数)
[CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 94 Solved: 53 Description 废话不多说,反正小w要发喜 ...
- [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...
- CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)
Permutation p is an ordered set of integers p1, p2, ..., pn, consisting of n distinct positive in ...
- HDU 5838 (状压DP+容斥)
Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...
- Codeforces 611C New Year and Domino DP+容斥
"#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容 ...
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
随机推荐
- TortoiseGit push免输密码
(ฅ>ω<*ฅ) 噫又好了~ TortoiseGit push免输密码的方法 – 晨旭的博客~https://www.chenxublog.com/2016/03/04/tortoiseg ...
- 网站数据分析&初始来源
数据分析:如何追踪访客初始来源_搜索学院_百度搜索资源平台 https://ziyuan.baidu.com/college/articleinfo?id=260 网站数据分析:如何追踪访客初始来源 ...
- 用Python删除本地目录下某一时间点之前创建的文件
参考http://www.cnblogs.com/iderek/p/8035757.html os.listdir(dirname):列出dirname下的目录和文件 os.getcwd():获得当前 ...
- myecplise ssh项目配置上遇到的问题
版本:spring3.1+hib4.1+struts2.1 学习项目使用此版本运行时,总是会遇到各样的错误,在这里做一下记录. 问题1:log4j相关 spring的web项目,执行时报错: 信息: ...
- vuex的购物车效果 index.js
import Vue from 'vue'; import Vuex, { Store } from 'vuex'; import { stat } from 'fs'; Vue.use(Vuex); ...
- C#复习笔记(3)--C#2:解决C#1的问题(结束C#2的内容:最后一些特性)
结束C#2的内容:最后一些新性 这是本章要讲的内容: 分部类型:可以在多个源文件中为 一个类型编写代码. 特别适用于部分代码是自动生成, 而其他部分的代码为手写的类型. 静态类:对工具类进行整理, 以 ...
- Junit概述
Junit -> java unit.也就是说Junit是xunit家族中的一员. unit <- unit test case,即单元测试用例. Junit = java uni ...
- git连接到github
基本流程如图 如何配置SSH key:在gitBash里执行. 1.检查电脑上是否生成过了,如果已经生成了,则需要删除后再操作 cd ~ cd .ssh 提示:No such file or dire ...
- NIO和经典IO
NIO未必更快,在Linux上使用Java6完成的测试中,多线程经典I/O设计胜出NIO30%左右 异步I/O强于经典I/O:服务器需要支持超大量的长期连接,比如10000个连接以上,不过各个客户端并 ...
- 索引使用,分析初探。(explain分析执行计划,以及强制使用force index)
促使这次探索的初衷还是因为要对一个定时脚本性能进行优化. 脚本有两个指定状态分别是status, latest_process_status,和一个超期时间expire_time进行限制. 按照我以前 ...