L公司有N个工厂,由高到底分布在一座山上。

工厂1在山顶,工厂N在山脚。 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。

突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。

由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。

对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。

假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据:

  • 工厂i距离工厂1的距离Xi(其中X1=0);
  • 工厂i目前已有成品数量Pi;
  • 在工厂i建立仓库的费用Ci;

请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。

Solution

有一个非常好的东西,就是只能运送到到比自身编号大的点,这样我们就可以列出dp方程。

dp[i]=max(dp[j]+x[i]*(sum[i]-sum[j])+sump[i]-sump[j]+c[i])

这里sum[i]指p[i]的前缀和,sump[i]指x[i]*p[i]的前缀和。

这样是n^2的,考虑如何优化。

按照惯例,我们把含i的式子和含j的式子分开来看。

dp[i]=dp[j]+x[i]*sum[i]-x[i]*sum[j]+sump[i]-sump[j]+c[i];

令a[i]=x[i]*sum[i]-sump[i]-dp[i]  . b[i]=dp[i]+sump[i];

dp式子就变成了x[i]*sum[j]-a[i]=b[i]

为了求最小值,我们就维护一个下凸包。

观察到x[i]和sum[i]都是单调递增的,用单调队列就可以了。

Code

#include<iostream>
#include<cstdio>
#define Y(i) (dp[i]+sup[i])
#define X(i) (sum[i])
#define N 1000002
using namespace std;
long long x[N],y[N],p[N],c[N],sum[N],dp[N],sup[N],n,h,t,q[N];
inline int rd(){
int x=;char c=getchar();
while(!isdigit(c))c=getchar();
while(isdigit(c)){
x=(x<<)+(x<<)+(c^);
c=getchar();
}
return x;
}
inline double calc(int i,int j){
return 1.0*((double)Y(j)-Y(i))/(double)(X(j)-X(i));
}
int main(){
n=rd();
for(int i=;i<=n;++i)x[i]=rd(),p[i]=rd(),c[i]=rd(),sum[i]=sum[i-]+p[i],sup[i]=sup[i-]+p[i]*x[i];
for(int i=;i<=n;++i){
while(h<t&&calc(q[h],q[h+])<x[i])h++;
dp[i]=dp[q[h]]+x[i]*(sum[i]-sum[q[h]])-sup[i]+sup[q[h]]+c[i];
while(h<t&&calc(q[t-],q[t])>calc(q[t],i))t--;
q[++t]=i;
}
cout<<dp[n];
return ;
}

[ZJOI2007]仓库建设(斜率优化)的更多相关文章

  1. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  2. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  3. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  4. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  5. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  6. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  7. [BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)

    Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...

  8. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

  9. [ZJOI2007] 仓库建设 - 斜率优化dp

    大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\ ...

随机推荐

  1. 11-vue的使用

    一.安装 对于新手来说,强烈建议大家使用<script>引入 二. 引入vue.js文件 我们能发现,引入vue.js文件之后,Vue被注册为一个全局的变量,它是一个构造函数. 三.使用V ...

  2. c#+linux+mono+Redis集群(解决无法连接Redis的问题)

    在linux环境中使用mono来执行c#的程序, 在连接redis的时候遇到了无法连接数据库的错误.如下: Unhandled Exception:StackExchange.Redis.RedisC ...

  3. windows下使用cmake编译zlib与libpng libjpeg

    win7下使用VS2010编译jpeglib 1.下载源代码下载地址:http://www.ijg.org/files/,     选择最新版本的windows版本压缩包,进行下载.     jpeg ...

  4. Git之项目使用

    现在最为盛行的版本控制器,非git莫属了, 那就看看在项目中我们是如何使用它的吧 一. 在已经存在秘钥对的情况下,我们需要在本地进行相关配置 git config --global user.name ...

  5. JMeter学习FTP测试计划(转)

    FTP服务主要提供上传和下载功能.有时间需要我们测试服务器上传和下载的性能.在这里我通过JMeter做一个FTP测试计划的例子. 1.创建一个线程组 2.线程组--->添加--->配置元件 ...

  6. Laravel认证模块开发

      菜鸟学Laravel(二) Laravel认证模块开发 laravel内部已经做好了一个简单的登录模块,我们可以用如下命令来生成: 1 php artisan make:auth 我们查看一下路由 ...

  7. Java中 VO、 PO、DO、DTO、 BO、 QO、DAO、POJO的概念(转)

    PO(persistant object) 持久对象 在 o/r 映射的时候出现的概念,如果没有 o/r 映射,没有这个概念存在了.通常对应数据模型 ( 数据库 ), 本身还有部分业务逻辑的处理.可以 ...

  8. mycat - 水平分表

    相对于垂直拆分的区别是:垂直拆分是把不同的表拆到不同的数据库中,而水平拆分是把同一个表拆到不同的数据库中.水平拆分不是将表的数据做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中包含一部分 ...

  9. 莫烦scikit-learn学习自修第五天【训练模型的属性】

    1.代码实战 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ from sklearn import datasets from sklearn.linear ...

  10. linux硬盘的分区、格式化、挂载以及LVM

    linux硬盘的分区.格式化.挂载以及LVM   多块硬盘的组合: 硬盘分两种:ide和scsi. ide硬盘: /dev/hda 第一块IDE硬盘 /dev/hdb 第二块IDE硬盘 ... /de ...