引擎是sqlalchemy的核心,不管是 sql core 还是orm的使用都需要依赖引擎的创建,为此我们研究下,引擎是如何创建的。

 from sqlalchemy import create_engine
engine = create_engine('mysql+pymysql://root:x@127.0.0.1/test',
echo=True, # 设置为True,则输出sql语句
pool_size=5, # 数据库连接池初始化的容量
max_overflow=10, # 连接池最大溢出容量,该容量+初始容量=最大容量。超出会堵塞等待,等待时间为timeout参数值默认30 pool_recycle=7200 # 重连周期
)

create_engine 创建引擎对象,源代码如下:

class PlainEngineStrategy(DefaultEngineStrategy):
"""Strategy for configuring a regular Engine.""" name = "plain"
engine_cls = base.Engine PlainEngineStrategy()

  这里有个参数 strategy:策略,一般情况默认是'plain',通过参数动态去实例策略类。我们看看对应默认的策略'plain'对应的类是哪个?

default_strategy = "plain"
def create_engine(*args, **kwargs):
strategy = kwargs.pop("strategy", default_strategy)
strategy = strategies.strategies[strategy]
return strategy.create(*args, **kwargs)
可以看到是PlainEngineStrategy(),接下来回到创建方法 strategy.create(*args, **kwargs),具体看看怎么创建的。
其实调用了父类DefaultEngineStrategy的方法create。

  

class DefaultEngineStrategy(EngineStrategy):
"""Base class for built-in strategies.""" def create(self, name_or_url, **kwargs):
# create url.URL object
u = url.make_url(name_or_url) plugins = u._instantiate_plugins(kwargs) u.query.pop("plugin", None)
kwargs.pop("plugins", None) entrypoint = u._get_entrypoint()
dialect_cls = entrypoint.get_dialect_cls(u) if kwargs.pop("_coerce_config", False): def pop_kwarg(key, default=None):
value = kwargs.pop(key, default)
if key in dialect_cls.engine_config_types:
value = dialect_cls.engine_config_types[key](value)
return value else:
pop_kwarg = kwargs.pop dialect_args = {}
# consume dialect arguments from kwargs
for k in util.get_cls_kwargs(dialect_cls):
if k in kwargs:
dialect_args[k] = pop_kwarg(k) dbapi = kwargs.pop("module", None)
if dbapi is None:
dbapi_args = {}
for k in util.get_func_kwargs(dialect_cls.dbapi):
if k in kwargs:
dbapi_args[k] = pop_kwarg(k)
dbapi = dialect_cls.dbapi(**dbapi_args) dialect_args["dbapi"] = dbapi for plugin in plugins:
plugin.handle_dialect_kwargs(dialect_cls, dialect_args) # create dialect
dialect = dialect_cls(**dialect_args) # assemble connection arguments
(cargs, cparams) = dialect.create_connect_args(u)
cparams.update(pop_kwarg("connect_args", {}))
cargs = list(cargs) # allow mutability # look for existing pool or create
pool = pop_kwarg("pool", None)
if pool is None: def connect(connection_record=None):
if dialect._has_events:
for fn in dialect.dispatch.do_connect:
connection = fn(
dialect, connection_record, cargs, cparams
)
if connection is not None:
return connection
return dialect.connect(*cargs, **cparams) creator = pop_kwarg("creator", connect) poolclass = pop_kwarg("poolclass", None)
if poolclass is None:
poolclass = dialect_cls.get_pool_class(u)
pool_args = {"dialect": dialect} # consume pool arguments from kwargs, translating a few of
# the arguments
translate = {
"logging_name": "pool_logging_name",
"echo": "echo_pool",
"timeout": "pool_timeout",
"recycle": "pool_recycle",
"events": "pool_events",
"use_threadlocal": "pool_threadlocal",
"reset_on_return": "pool_reset_on_return",
"pre_ping": "pool_pre_ping",
"use_lifo": "pool_use_lifo",
}
for k in util.get_cls_kwargs(poolclass):
tk = translate.get(k, k)
if tk in kwargs:
pool_args[k] = pop_kwarg(tk) for plugin in plugins:
plugin.handle_pool_kwargs(poolclass, pool_args) pool = poolclass(creator, **pool_args)
else:
if isinstance(pool, poollib.dbapi_proxy._DBProxy):
pool = pool.get_pool(*cargs, **cparams)
else:
pool = pool pool._dialect = dialect # create engine.
engineclass = self.engine_cls
engine_args = {}
for k in util.get_cls_kwargs(engineclass):
if k in kwargs:
engine_args[k] = pop_kwarg(k) _initialize = kwargs.pop("_initialize", True) # all kwargs should be consumed
if kwargs:
raise TypeError(
"Invalid argument(s) %s sent to create_engine(), "
"using configuration %s/%s/%s. Please check that the "
"keyword arguments are appropriate for this combination "
"of components."
% (
",".join("'%s'" % k for k in kwargs),
dialect.__class__.__name__,
pool.__class__.__name__,
engineclass.__name__,
)
) engine = engineclass(pool, dialect, u, **engine_args) if _initialize:
do_on_connect = dialect.on_connect()
if do_on_connect: def on_connect(dbapi_connection, connection_record):
conn = getattr(
dbapi_connection, "_sqla_unwrap", dbapi_connection
)
if conn is None:
return
do_on_connect(conn) event.listen(pool, "first_connect", on_connect)
event.listen(pool, "connect", on_connect) def first_connect(dbapi_connection, connection_record):
c = base.Connection(
engine, connection=dbapi_connection, _has_events=False
)
c._execution_options = util.immutabledict()
dialect.initialize(c)
dialect.do_rollback(c.connection) event.listen(pool, "first_connect", first_connect, once=True) dialect_cls.engine_created(engine)
if entrypoint is not dialect_cls:
entrypoint.engine_created(engine) for plugin in plugins:
plugin.engine_created(engine) return engine

  

我们逐一分析:
 u = url.make_url(name_or_url) # 这个方法解析传入的数据库连接的uri信息,符合条件最终返回一个URL对象
plugins = u._instantiate_plugins(kwargs) # 插件初始化,
entrypoint = u._get_entrypoint()  # 根据传入url中的数据库类型(mysql)和驱动库(pymysql),来注册插件,返回方言类
dialect_cls = entrypoint.get_dialect_cls(u)  # 获取Dialect类
这里需要说明下Dialect(方言类)的作用是用来定义数据库和DBapi的行为
 
if kwargs.pop("_coerce_config", False):

            def pop_kwarg(key, default=None):
value = kwargs.pop(key, default)
if key in dialect_cls.engine_config_types:
value = dialect_cls.engine_config_types[key](value)
return value else:
pop_kwarg = kwargs.pop dialect_args = {}
# consume dialect arguments from kwargs
for k in util.get_cls_kwargs(dialect_cls):
if k in kwargs:
dialect_args[k] = pop_kwarg(k)

  这段代码没啥,创建出方言所需要的完整参数dialect_args

dbapi = kwargs.pop("module", None)
if dbapi is None:
dbapi_args = {}
for k in util.get_func_kwargs(dialect_cls.dbapi):
if k in kwargs:
dbapi_args[k] = pop_kwarg(k)
dbapi = dialect_cls.dbapi(**dbapi_args) dialect_args["dbapi"] = dbapi

  这段代码 则是实例化dbpai对象。

# create dialect
dialect = dialect_cls(**dialect_args)

  

 
开始实例化方言

        (cargs, cparams) = dialect.create_connect_args(u)
cparams.update(pop_kwarg("connect_args", {}))
cargs = list(cargs) # allow mutability

  

创建连接所需要的参数

pool = pop_kwarg("pool", None)
if pool is None: def connect(connection_record=None):
if dialect._has_events:
for fn in dialect.dispatch.do_connect:
connection = fn(
dialect, connection_record, cargs, cparams
)
if connection is not None:
return connection
return dialect.connect(*cargs, **cparams) creator = pop_kwarg("creator", connect) poolclass = pop_kwarg("poolclass", None)
if poolclass is None:
poolclass = dialect_cls.get_pool_class(u)
pool_args = {"dialect": dialect} # consume pool arguments from kwargs, translating a few of
# the arguments
translate = {
"logging_name": "pool_logging_name",
"echo": "echo_pool",
"timeout": "pool_timeout",
"recycle": "pool_recycle",
"events": "pool_events",
"use_threadlocal": "pool_threadlocal",
"reset_on_return": "pool_reset_on_return",
"pre_ping": "pool_pre_ping",
"use_lifo": "pool_use_lifo",
}
for k in util.get_cls_kwargs(poolclass):
tk = translate.get(k, k)
if tk in kwargs:
pool_args[k] = pop_kwarg(tk) for plugin in plugins:
plugin.handle_pool_kwargs(poolclass, pool_args) pool = poolclass(creator, **pool_args)
else:
if isinstance(pool, poollib.dbapi_proxy._DBProxy):
pool = pool.get_pool(*cargs, **cparams)
else:
pool = pool
pool._dialect = dialect

  创建连接池,默认创建pool.QueuePool

# create engine.
engineclass = self.engine_cls
engine_args = {}
for k in util.get_cls_kwargs(engineclass):
if k in kwargs:
engine_args[k] = pop_kwarg(k) _initialize = kwargs.pop("_initialize", True) # all kwargs should be consumed
if kwargs:
raise TypeError(
"Invalid argument(s) %s sent to create_engine(), "
"using configuration %s/%s/%s. Please check that the "
"keyword arguments are appropriate for this combination "
"of components."
% (
",".join("'%s'" % k for k in kwargs),
dialect.__class__.__name__,
pool.__class__.__name__,
engineclass.__name__,
)
) engine = engineclass(pool, dialect, u, **engine_args)

  从上面可以看出来,引擎的核心是连接池和方言,连接池负责连接的维护,方言负责数据的行为。

if _initialize:
do_on_connect = dialect.on_connect()
if do_on_connect: def on_connect(dbapi_connection, connection_record):
conn = getattr(
dbapi_connection, "_sqla_unwrap", dbapi_connection
)
if conn is None:
return
do_on_connect(conn) event.listen(pool, "first_connect", on_connect)
event.listen(pool, "connect", on_connect) def first_connect(dbapi_connection, connection_record):
c = base.Connection(
engine, connection=dbapi_connection, _has_events=False
)
c._execution_options = util.immutabledict()
dialect.initialize(c)
dialect.do_rollback(c.connection) event.listen(pool, "first_connect", first_connect, once=True)

  

第一次初始化连接并进行监听
 
dialect_cls.engine_created(engine)
if entrypoint is not dialect_cls:
entrypoint.engine_created(engine) for plugin in plugins:
plugin.engine_created(engine)

  

总结:
 
create_engine通过传入的URI和相关参数,创建一个Engine,该引擎包含了方言(Dialect)和Pool,Dialect如中文名翻译一样,方言:作为不同的数据库Mysql,Oracle,PostgreSQL等,会有不同的行为,Dialect就是用来操作不同数据库的行为,对应接口调用dbapi操作。
而Pool作为数据库连接池,用来管理数据库连接,通过维护一个连接池,池子的大小,数量和生命周期,减少数据库连接的频繁切换,提高查询等操作效率。

sqlalchemy 源码分析之create_engine引擎的创建的更多相关文章

  1. [源码分析] Dynomite 分布式存储引擎 之 DynoJedisClient(1)

    [源码分析] Dynomite 分布式存储引擎 之 DynoJedisClient(1) 目录 [源码分析] Dynomite 分布式存储引擎 之 DynoJedisClient(1) 0x00 摘要 ...

  2. [源码分析] Dynomite 分布式存储引擎 之 DynoJedisClient(2)

    [源码分析] Dynomite 分布式存储引擎 之 DynoJedisClient(2) 目录 [源码分析] Dynomite 分布式存储引擎 之 DynoJedisClient(2) 0x00 摘要 ...

  3. Nmap源码分析(脚本引擎)

    Nmap提供了强大的脚本引擎(NSE),以支持通过Lua编程来扩展Nmap的功能.目前脚本库已经包含300多个常用的Lua脚本,辅助完成Nmap的主机发现.端口扫描.服务侦测.操作系统侦测四个基本功能 ...

  4. Docker源码分析(二):Docker Client创建与命令执行

    1. 前言 如今,Docker作为业界领先的轻量级虚拟化容器管理引擎,给全球开发者提供了一种新颖.便捷的软件集成测试与部署之道.在团队开发软件时,Docker可以提供可复用的运行环境.灵活的资源配置. ...

  5. Spark源码分析(三)-TaskScheduler创建

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3879151.html 在SparkContext创建过程中会调用createTaskScheduler函 ...

  6. Spring源码分析(十八)创建bean

    本文结合<Spring源码深度解析>来分析Spring 5.0.6版本的源代码.若有描述错误之处,欢迎指正. 目录 一.创建bean的实例 1. autowireConstructor 2 ...

  7. twemproxy源码分析2——守护进程的创建

    twemproxy源码中关于守护进程的创建实现得比较标准,先贴出代码来,然后结合一些资料来分析和列举一些实现守护进程的常用方法,不过不得不说twemproxy的实现确实是不错的,注释都写在了代码中,直 ...

  8. tair源码分析——leveldb存储引擎使用

    分析完leveldb以后,接下来的时间准备队tair的源码进行阅读和分析.我们刚刚分析完了leveldb而在tair中leveldb是其几大存储引擎之一,所以我们这里首先从tair对leveldb的使 ...

  9. Mysql源码分析--csv存储引擎

    一直想分析下mysql的源码,开始的时候不知道从哪下手,先从csv的文件存储开始吧,这个还是比较简单的.我是用的是mysql5.7.16版本的源码. csv源码文件在mysql源码的mysql-5.7 ...

随机推荐

  1. js初学者循环经典题目

    1.根据一个数字日期,判断这个日期是这一年的第几天例如: 2016和02和11,计算后结果为42 var y = 2016;//+prompt("请输入年份") ;         ...

  2. css定位 双飞翼

    <!doctype html><html><head><meta charset="utf-8"><title>双飞翼& ...

  3. CentOS6-Linux内核编译 详细步骤

    CentOS6-Linux内核编译 详细步骤 背景 Win10用VMwareWorkstation搭的虚拟机 CentOS6.5,内核版本2.6.32-431.el6.x86_64 在该环境下升级至4 ...

  4. 你真的了解 volatile 关键字吗?

    今天,让我们一起来探讨 Java 并发编程中的知识点:volatile 关键字 本文主要从以下三点讲解 volatile 关键字: volatile 关键字是什么? volatile 关键字能解决什么 ...

  5. Xbim.GLTF源码解析(一):简介

    原创作者:flowell,转载请标明出处:https://www.cnblogs.com/flowell/p/10838972.html 简介 Xbim.GLTF是将IFC文件转换成GLTF文件的一个 ...

  6. NLP预训练模型-百度ERNIE2.0的效果到底有多好【附用户点评】

    ERNIE是百度自研的持续学习语义理解框架,该框架支持增量引入词汇(lexical).语法 (syntactic) .语义(semantic)等3个层次的自定义预训练任务,能够全面捕捉训练语料中的词法 ...

  7. SpringBoot系列:Spring Boot集成定时任务Quartz

    一.关于Quartz Quartz是OpenSymphony开源组织在Job scheduling领域又一个开源项目,它可以与J2EE与J2SE应用程序相结合也可以单独使用.在java企业级应用中,Q ...

  8. Numpy 排序和使用索引

    # 导包 import numpy as np 排序 .sort() x = np.arange(16) # array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

  9. 基于xposed Hook框架实现个人免签支付方案

    我的个人网站如何实现支付功能? 想必很多程序员都有过想开发一个自己的网站来获得一些额外的收入,但做这件事会遇到支付这个问题.目前个人网站是无法实现支付功能的. 今天我就给大家分享一下我的实现方案:&l ...

  10. 常用的webpack优化方法

    1. 前言 关于webpack,相信现在的前端开发人员一定不会陌生,因为它已经成为前端开发人员必不可少的一项技能,它的官方介绍如下: webpack 是一个模块打包器.webpack的主要目标是将 J ...