题文:https://vjudge.net/problem/UVA-12167

题解:
  很明显,先要缩点。然后画一下图就会发现是入度为0的点和出度为0的点取max。

代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#include <stack>
#define MAXN 50100
using namespace std;
struct edge{
int first;
int next;
int to;
}a[MAXN*];
int low[MAXN],dfn[MAXN],have[MAXN],fa[MAXN];
int in[MAXN],out[MAXN];
int num=,num1=,num2=,n,m;
stack<int> s; void cl(){
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(have,,sizeof(have));
memset(fa,,sizeof(fa));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
memset(a,,sizeof(a));
num1=num2=num=;
} void addedge(int from,int to){
a[++num].to=to;
a[num].next=a[from].first;
a[from].first=num;
} void tarjian(int now){
low[now]=dfn[now]=++num1;
have[now]=;s.push(now);
for(int i=a[now].first;i;i=a[i].next){
int to=a[i].to;
if(!dfn[to]){
tarjian(to);
low[now]=min(low[now],low[to]);
}
else if(have[to]) low[now]=min(low[now],dfn[to]);
}
if(low[now]==dfn[now]){
int u=-;
num2++;
while(u!=now){
u=s.top();s.pop();
have[u]=;
fa[u]=num2;
}
}
} void make(){
for(int now=;now<=n;now++){
for(int i=a[now].first;i;i=a[i].next){
int to=a[i].to;
if(fa[now]!=fa[to]) out[fa[now]]++,in[fa[to]]++;
}
}
} int main()
{
int t;cin>>t;
while(t--){
cl();
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int x,y;scanf("%d%d",&x,&y);
addedge(x,y);
}
while(!s.empty()) s.pop();
for(int i=;i<=n;i++) if(!dfn[i]) tarjian(i);
make();
int x=,y=;
for(int i=;i<=num2;i++) if(in[i]==) x++;
for(int i=;i<=num2;i++) if(out[i]==) y++;
if(num2==) printf("0\n");
else printf("%d\n",max(x,y));
}
return ;
}

Proving Equivalences UVA - 12167的更多相关文章

  1. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  2. hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  3. Proving Equivalences(加多少边使其强联通)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  4. UVALive - 4287 - Proving Equivalences(强连通分量)

    Problem   UVALive - 4287 - Proving Equivalences Time Limit: 3000 mSec Problem Description Input Outp ...

  5. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  6. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  7. UVA12167 Proving Equivalences

    UVA12167 Proving Equivalences 题意翻译 题目描述 在数学中,我们常常需要完成若干命题的等价性证明. 例如:有4个命题a,b,c,d,要证明他们是等价的,我们需要证明a&l ...

  8. HDU 2767 Proving Equivalences (强联通)

    pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...

  9. Proving Equivalences (hdu 2767 强联通缩点)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. Go操作kafka

    Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据,具有高性能.持久化.多副本备份.横向扩展等特点.本文介绍了如何使用Go语言发送和接收kafka消息. s ...

  2. [币严区块链]数字货币交易所之瑞波(XRP)钱包对接

    对接Ripple(XRP),不需要本地部署钱包,直接访问Ripple API,本文包括访问Ripple API及如何免费获取测试的XRP. 对接流程 安装Ripple API Ripple API 接 ...

  3. kafka 主题管理

    对于 kafka 主题(topic)的管理(增删改查),使用最多的便是kafka自带的脚本. 创建主题 kafka提供了自带的 kafka-topics 脚本,用来帮助用户创建主题(topic). b ...

  4. 松软科技课堂:SQL-LEFT-JOIN 关键字

    SQL LEFT JOIN 关键字 LEFT JOIN 关键字会从左表 (table_name1) 那里返回所有的行,即使在右表 (table_name2) 中没有匹配的行. LEFT JOIN 关键 ...

  5. Apache Commons Collections 反序列化详细分析学习总结

    0x01.环境准备: Apache Commons Collections 3.1版本,下载链接参考: https://www.secfree.com/a/231.html jd jui地址(将jar ...

  6. caffe学习三:使用Faster RCNN训练自己的数据

    本文假设你已经完成了安装,并可以运行demo.py 不会安装且用PASCAL VOC数据集的请看另来两篇博客. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于c ...

  7. POA理论:不要被你的目标欺骗了你

    ![](https://img2018.cnblogs.com/blog/330316/201909/330316-20190922210844977-255725510.jpg) 最近通过<跃 ...

  8. JAVA设计模式-动态代理(Proxy)源码分析

    在文章:JAVA设计模式-动态代理(Proxy)示例及说明中,为动态代理设计模式举了一个小小的例子,那么这篇文章就来分析一下源码的实现. 一,Proxy.newProxyInstance方法 @Cal ...

  9. [经验栈]SQL语句逻辑运算符"AND"、"&&"兼容性

    最近打算把博客转移到typecho平台,选了一个风格个人比较喜欢的主题,即Akina for Typecho 主题模板,在这里先感谢题主的开源分享,但是在使用过程中一开始就出现"500 Da ...

  10. JAVA设计模式---单例模式篇

    单例模式(singleton):是JAVA中最简单的一种设计模式,属于创建型模式.所谓单例,就是整个程序有且仅有一个实例. 特点: 构造方法私有化 在本类中实例化一个对象作为本类的属性 对外提供一个访 ...