声学回声消除(Acoustic Echo Cancellation)
回声就是声音信号经过一系列反射之后,又听到了自己讲话的声音,这就是回声。一些回声是必要的,比如剧院里的音乐回声以及延迟时间较短的房间回声;而大多数回声会造成负面影响,比如在有线或者无线通信时重复听到自己讲话的声音(回想那些年我们开黑打游戏时,如果其中有个人开了外放,他的声音就会回荡来回荡去)。因此消除回声的负面影响对通信系统是十分必要的。
针对回声消除(Acoustic Echo Cancellation,AEC )问题,现如今最流行的算法就是基于自适应滤波的回声消除算法。本文从回声信号的两种分类以及 AEC 的基本原理出发,介绍几种经典的 AEC 算法并对其性能进行阐释。
回声分类
在通信系统中,回声主要分为两类:电路回声和声学回声
电路回声
电路回声通常产生于有线通话中,而造成电路回声的根本原因是转换混合器的二线-四线阻抗不能完全匹配。中心局至转换混合器之间采用四线的连接方式传输信号,上面两条线路用于发送给用户端信号,下面两条线路用于接收用户端信号。通信公司为了降低远距离信号传输成本,将混合器至用户端的连接线减少为二线连接,分别用于用户端信号的接受与发送。中间的转换混合电路功能是将四线连接转换为二线连接,由于在转换过程中使用了不同型号的电线或者负载线圈没有被使用的原因,不可避免地会产生阻抗不匹配现象,导致混合器接收线路上的语音信号流失到了发送线路,产生了回声信号,使得另一端的用户在接收信号的同时听到了自己的声音。
电路回声产生原理
在现如今的数字通信网络中,转换混合器与数模转换器融为一体,但无论是模拟电子线路还是数字电子线路,二-四线的转换都会造成阻抗不匹配问题,从而导致其产生电路回声,影响现代通信质量。由于电路回声的线性以及稳定性,用一个简单的线性叠加器就可以实现电路回声消除。首先将产生的回声信号在数值上取反,线性地叠加在回声信号上,将产生的回声信号抵消,实现电路回声的初步消除。然而由于技术缺陷,线性叠加器不能完整地将回声信号抹去,因此需要添加一个非线性处理器,其实质是一个阻挡信号的开关,将残余的回声信号经过非线性处理之后,就可以实现电路回声的消除,或者得到噪声很小的静音信号。由于电路回声信号是线性且稳定的,所以比较容易将其消除,而本文主要研究的是如何消除非线性的声学回声。
电路回声消除的基本原理
声学回声
在麦克风与扬声器互相作用影响的双工通信系统中极易产生声学回声。如下图所示
远端讲话者A-->麦克风A-->电话A-->电话B---->扬声器B--->麦克风B-->电话B-->电话A-->扬声器A--->麦克风A--->.........就这样无限循环,
详细讲解:远端讲话者A的话语被麦克风采集并传入至通信设备,经过无线或有线传输之后达到近端的通信设备,并通过近端 B 的扬声器播放,这个声音又会被近端 B 的麦克风拾取至其通信设备形成声学回声,经传输又返回了远端 A 的通信设备,并通过远端 A 的扬声器播放出来,从而远端讲话者就听到了自己的回声。
声学回声产生原理
声学回声信号根据传输途径的差别可以分别直接回声信号和间接回声信号。
直接回声:近端扬声器B将语音信号播放出来后,近端麦克风B直接将其采集后得到的回声。
直接回声不受环境的印象,与扬声器到麦克风的距离及位置有很大的关系,因此直接回声是一种线性信号。
间接回声:近端扬声器B将语音信号播放出来后,语音信号经过复杂多变的墙面反射后由近端麦克风B将其拾取。
间接回声的大小与房间环境、物品摆放以及墙面吸引系数等等因素有关,因此间接回声是一种非线性信号。
回声消除技术主要用于在免提电话、电话会议系统等情形中。
AEC的基本原理
如今解决 AEC 问题最常用的方法,就是
使用不同的自适应滤波算法调整滤波器的权值向量,估计一个近似的回声路径来逼近真实回声路径,从而得到估计的回声信号,并在纯净语音和回声的混合信号中除去此信号来实现回声的消除。
AEC的基本原理
$x(n)$为远端输入信号,经过未知的回声路径$w(n)$得到$y(n)=x(n)*w(n)$,再加上观测噪声$v(n)$即为期望信号$d(n)= y(n) + v(n)$。x(n)通过自适应滤波器$\hat{w}(n)$得到估计的回声信号,并与期望信号$d(n)$相减得到误差信号$e(n)$,即$e(n)=d(n)-\hat{w}^T(n)x(n)$,误差信号的值越小说明自适应滤波算法所估计的回声路径就越接近实际的回声路径。
滤波器采用特定的自适应算法不停地调整权值向量,使估计的回声路径 \hat{w}(n) 逐渐趋近于真实回声路径$w(n)$。显然,在 AEC 问题中,自适应滤波器的选择对回声消除的性能好坏起着十分关键的作用。
自适应滤波器的基本原理
自适应滤波器是一个对输入信号进行处理并不停学习,直到其达到期望值的器件。自适应滤波器在输入信号非平稳条件下,也可以根据环境不断调节滤波器权值向量,使算法达到特定的收敛条件,从而实现自适应滤波过程。
自适应滤波器按输入信号类型可分为模拟滤波器和离散滤波器,本文中使用的是离散滤波器中的数字滤波器(数字滤波器按结构可划分为输入不仅与过去和当前的输入有关、还与过去的输出有关的无限冲激响应滤波器(IIR),以及输出与有限个过去和当前的输入有关的有限冲激响应滤波器(FIR))为了使得自适应滤波器具有更强的稳定性,并且具有足够的滤波器系数可以用来调整以达到特定的收敛准则,一般选取横向的 FIR 滤波器进行来进行回声的消除
横向FIR滤波器结构框图
$x(n)$是远端输入信号,$\hat{w}_i(n)$是滤波器系数,其中$i=0,1,...,L-1$,$L$为滤波器的长度,$n$为采样点数,$\hat{w}(n)$为滤波器的权值向量且$\hat{w}(n)=[\hat{w}_0(n),\hat{w}_1(n),...,\hat{w}_{L-1}(n)]^T$,根据误差信号$e(n)=d(n)-\hat{w}^T(n)x(n)$的值以及不同算法的收敛准则调整滤波器的权值向量。
然而自适应滤波算法的选择从根本上决定了回声消除的效果是否良好,接下来将介绍几种解决 AEC 问题的经典自适应滤波算法。
回声消除常用算法
LSM算法
通过上面AEC的基本原理我们知道了误差信号$e(n)$等于期望信号减去滤波器输出信号:
$$e(n)=d(n)-\hat{w}^T(n)x(n)$$
对上式两端先平方,然后再求其数学期望,可将$e(n)$的MSE表示为:
$$\xi=E[e^2(n)]=E[d^2(n)]-2P^T\hat{w}(n)+\hat{w}^T(n)R\hat{w}(n)$$
其中,$P=E[d(n)x(n)]$为$d(n)$与输入信号$x(n)$的负相关矩阵,$R=E[x(n)x^T(n)]$为$x(n)$的自相关矩阵。
对误差信号求导并且使导数值置零,求解得到使得误差最小的“最优权重” $\hat{w}_{opt}(n)=\frac{P}{R}$,R 和 P 的估计分别为$\hat{R}(n) 和$\hat{P}(n)$ ,利用各自的瞬时估计值将其分别表示为:\hat{R}(n)=x(x)x^T(n);\hat{P}(n)=d(n)x(n) 。另外,用$\hat{g}_w(n)$表示误差信号对权值向量导数的估计值,利用下式方法求解最优权值向量的维纳解:
得到:$\hat{g}_w(n)=-2e(n)x(n)$ ,算法取瞬时平方误差作为目标函数,那么$\hat{g}_w(n)$为其真实梯度,因为:
因此得到 LMS 算法的权值向量更新公式:
$$\hat{w}(n+1)=\hat{w}(n)+2\mu e(n)x(n)$$
式中,$\mu$为固定步长因子,$\mu$的大小很大程度上决定了算法的收敛与稳态性能。LMS 算法复杂性低,但是它的收敛速度慢。为改善 LMS 这个不足之处,科研人员提出一系列改进算法,NLMS 算法就是其中一种
NLMS算法
NSAF算法
参考
《基于自适应滤波器的声学回声消除研究——冯江浩》
声学回声消除(Acoustic Echo Cancellation)的更多相关文章
- 论文翻译:2018_Deep Learning for Acoustic Echo Cancellation in Noisy and Double-Talk Scenarios
论文地址:深度学习用于噪音和双语场景下的回声消除 博客地址:https://www.cnblogs.com/LXP-Never/p/14210359.html 摘要 传统的声学回声消除(AEC)通过使 ...
- 论文翻译:2020_Generative Adversarial Network based Acoustic Echo Cancellation
论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-5.pdf 基于GAN的回声消除 摘要 生成对抗网络(GANs)已成为语音增强( ...
- 论文翻译:2020_Attention Wave-U-Net for Acoustic Echo Cancellation
论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-10.pdf Attention Wave-U-Net 的回声消除 摘要 提出了 ...
- 论文翻译:2020_A Robust and Cascaded Acoustic Echo Cancellation Based on Deep Learning
论文地址:https://indico2.conference4me.psnc.pl/event/35/contributions/3364/attachments/777/815/Thu-1-10- ...
- 论文翻译:2021_Semi-Blind Source Separation for Nonlinear Acoustic Echo Cancellation
论文地址:https://ieeexplore.ieee.org/abstract/document/9357975/ 基于半盲源分离的非线性回声消除 摘要: 当使用非线性自适应滤波器时,数值模型与实 ...
- 论文翻译:2021_ICASSP 2021 ACOUSTIC ECHO CANCELLATION CHALLENGE: INTEGRATED ADAPTIVE ECHO CANCELLATION WITH TIME ALIGNMENT AND DEEP LEARNING-BASED RESIDUAL ECHO PLUS NOISE SUPPRESSION
论文地址:https://ieeexplore.ieee.org/abstract/document/9414462 ICASSP 2021声学回声消除挑战:结合时间对准的自适应回声消除和基于深度学习 ...
- 论文翻译:2021_AEC IN A NETSHELL: ON TARGET AND TOPOLOGY CHOICES FOR FCRN ACOUSTIC ECHO CANCELLATION
论文地址:https://ieeexploreieee.53yu.com/abstract/document/9414715 Netshell 中的 AEC:关于 FCRN 声学回声消除的目标和拓扑选 ...
- 论文翻译:2021_论文翻译:2018_F-T-LSTM based Complex Network for Joint Acoustic Echo Cancellation and Speech Enhancement
论文地址:https://arxiv.53yu.com/abs/2106.07577 基于 F-T-LSTM 复杂网络的联合声学回声消除和语音增强 摘要 随着对音频通信和在线会议的需求日益增加,在包括 ...
- 论文翻译:2021_Joint Online Multichannel Acoustic Echo Cancellation, Speech Dereverberation and Source Separation
论文地址:https://arxiv.53yu.com/abs/2104.04325 联合在线多通道声学回声消除.语音去混响和声源分离 摘要: 本文提出了一种联合声源分离算法,可同时减少声学回声.混响 ...
随机推荐
- Django-手撸简易web框架-实现动态网页-wsgiref初识-jinja2初识-python主流web框架对比-00
目录 自己动手实现一个简易版本的web框架 手撸一个web服务端 根据请求 url 做不同的响应处理 基于wsgiref模块实现服务端 用wsgiref 模块的做的两件事 拆分服务端代码 支持新的请求 ...
- Django之使用内置函数和celery发邮件
邮箱配置 开启stmp服务 以163邮箱为例,点击设置里面的stmp 开启客户端授权密码 如上所示,因为我已经开启了,所以出现的是以上页面. 这样,邮箱的准备就已经完成了. 使用Django内置函数发 ...
- PythonI/O进阶学习笔记_4.自定义序列类(序列基类继承关系/可切片对象/推导式)
前言: 本文代码基于python3 Content: 1.python中的序列类分类 2. python序列中abc基类继承关系 3. 由list的extend等方法来看序列类的一些特定方法 4. l ...
- UGUI_创建旋转物体,使用Slider控制小球旋转速度
using System.Collections; using System.Collections.Generic; using UnityEngine; public class Player : ...
- Winform中怎样根据Name获取同窗体的控件
场景 在同一个Winform窗体中,点击一个Button按钮时, 获取同窗体的其他控件的属性. 首先需要对要获取的控件赋予Name属性,然后就可以通过Name进行获取. 实现 在Button的点击事件 ...
- 网关高可用之keepavlived全流程(安装/配置/验证/解析)
1.场景描述 因为要做网关的高可用,用到了keepalived+nginx,来保证nginx的高可用.(微服务时代之网关及注册中心高可用架构设计),如下图: 安装了keepavlived,走了一些弯路 ...
- HTML文档简介
HTML简介 HTML标签 html文档标签: html源代码就好像word文档,有特殊的语法结构定义自己的功能. html文档标签 html标签,其下由两个主要节点标签head.body. head ...
- (三)Spring 高级装配 bean的作用域@Scope
1.默认情况下,spring通过@Autowared注入的bean是单例的bean,但有些情况是不满足的,例如:购物车,每个会话,或每个用户登录使用的购物车都是独立的 spring的定义的作用域: a ...
- JQuery对于动态生成的标签绑定事件失效
JQuery对整个html文档进行dom操作后,我们要想动态绑定事件,有两种方法 1.在进行dom操作时,在标签中写上onclick="afun()" 2.利用document的操 ...
- Roman and Browser-罗曼的浏览器 CodeForce1100A 暴力
题目链接:Roman and Browser 题目原文 This morning, Roman woke up and opened the browser with