[SDOI2010][BZOJ 1925]地精部落
Description
Input
Output
#include<bits/stdc++.h>
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
int n,mod;
int f[][][],ans;
int main(){
n=read(),mod=read();
f[][][]=f[][][]=;
f[][][]=f[][][]=f[][][]=f[][][]=;
register int i,j,k;
for(i=;i<=n;i++)
for(j=;j<=i;j++){
for(k=;k<j;k++) f[i][][j]=(f[i][][j]+f[i-][][k])%mod;
for(k=j;k<i;k++) f[i][][j]=(f[i][][j]+f[i-][][k])%mod;
}
for(i=;i<=n;i++) ans=(ans+f[n][][i]+f[n][][i])%mod;
printf("%d\n",ans);
return ;
}
First : 对于每一个 数字 i 和 i+1 , 如果这两个数不是相邻的,那么交换两个数字的对应的方案数是一样的
Second: 我们由 1~n 的波动数列的任意一种,将每一个 ai 都可以用(n+1) 减去,那么得到的新的序列其实还是合法的,而且相对的山谷和山峰会改变!
比如有 波动序列 32415 和 34251
Third : 波动数列具有对称性......(那不是废话)
DP[i][j]表示 选 1 To i 这些数字,第一个数为山峰,且第一个数为 j;答案就是 ∑ DP[N][j] (j = 1 to N)
DP[i][j]=DP[i][j-1]+DP[i-1][i-j+1]
证明:由性质一可知,当j与j-1不相邻的时候,j作为头所有的方案数与j-1作为头的方案数相同,于是就有DP[I][J]=DP[I][J-1];
对于DP[i][j]+=DP[i-1][i+j-1];就是当j 与 j-1相邻时的情况;
我们可以这么想,我第一个数选择了J 并且定义为山峰,那我第二个数j-1必定为山谷,后面的数属于[1,j-1]和[j+1,i];
此时问题转化成了求 i-1个数,j-1为头,但是j-1 为山谷的方案数,由性质2可知,j-1作山谷和作山峰的方案数相同;
现在的问题就是,此时的区间和我DP方程的区间意义不同;
没关系;因为山峰与山谷是相对位置关系,将[j+1,i]区间的每个数都减一,这样是不改变相对大小关系的,并且此时就符合我们的方程了;
另外,我DP[i-1][j-1]表示的是J-1为山顶时的个数,为了让其表示J-1为山谷的情况,要改成DP[i-1][(i-1+1)-(j-1)];
这样就得到了我们的转移方程,我们可以用滚动数组优化空间;
代码:
#include<bits/stdc++.h>
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
int f[][];
int n,mod,ans;
int main(){
n=read(),mod=read();
f[][]=;
for(int i=;i<=n;i++)for(int j=;j<=i;j++)
f[i&][j]=(f[i&][j-]+f[(i-)&][i-j+])%mod;
ans=;
for(int j=;j<=n;j++)ans=(ans+f[n&][j])%mod;
printf("%d",(ans<<)%mod);
return ;
}
来自PaperCloud的博客,未经允许,请勿转载,TKS!
[SDOI2010][BZOJ 1925]地精部落的更多相关文章
- [sdoi 2010][bzoj 1925]地精部落(神仙dp)
Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi, ...
- bzoj 1925 地精部落
Written with StackEdit. Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 \(N\) 的山脉 \(H ...
- BZOJ 1925 地精部落(DP)
一道很经典的DP题. 题意:求n排列中波动排列的种数. 不妨考虑DP,令dp1[i][j],表示1-j的排列中,第一项为i之后递增的波动排列种数.dp2[i][j]表示1-j的排列中,第一项为i之后递 ...
- BZOJ 1925地精部落题解
题目链接 一道神仙题,有很多思考的方式,这里选择最好理解的一种来讲 我们将序列分为两种,一种开头递增,一种开头递减,显然这两种序列的数目是一样的 现在我们只用考虑开头递增的情况 f[i][j]表示前i ...
- BZOJ 1925: [Sdoi2010]地精部落( dp )
dp(i,j)表示1~i的排列中, 以1~j为开头且开头是下降的合法方案数 这种数列具有对称性, 即对于一个满足题意且开头是上升的n的排列{an}, 令bn = n-an+1, 那么{bn}就是一个满 ...
- 1925: [Sdoi2010]地精部落
1925: [Sdoi2010]地精部落 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1929 Solved: 1227 [Submit][Statu ...
- 【BZOJ1925】[SDOI2010]地精部落(动态规划)
[BZOJ1925][SDOI2010]地精部落(动态规划) 题面 BZOJ 洛谷 题解 一道性质\(dp\)题.(所以当然是照搬学长PPT了啊 先来罗列性质,我们称题目所求的序列为抖动序列: 一个抖 ...
- 【bzoj1925】地精部落[SDOI2010](dp)
题目传送门:1925: [Sdoi2010]地精部落 这道题,,,首先可以一眼看出他是要我们求由1~n的排列组成,并且抖来抖去的序列的方案数.然后再看一眼数据范围,,,似乎是O(n^2)的dp?然后各 ...
- BZOJ_1925_[Sdoi2010]地精部落_递推
BZOJ_1925_[Sdoi2010]地精部落_递推 Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 ...
随机推荐
- 转 Json数据格式化
/// <summary> /// JSON字符串格式化 /// </summary> /// <param name="json"></ ...
- ToLua Timer机制
从一个Bug说起: 在内部试玩时发现有个任务的玩家跟随Npc逻辑挂了. telnet连接到出问题的设备上, 开始搞事情 这个跟随的逻辑是一个Timer驱动的. 这个Timer在主角创建时就会启动. 一 ...
- wireshark分析https数据包解密前后的特点
wireshark分析https数据包解密前后的特点 (一)https解密前 1.协议种类:2种(1)TCP(第四层,传输层)(2)SSL/TLS(第五层,应用层,加解密)2.应用层数据所在数据包特点 ...
- 阿里云ACA—— I
ACA 阿里云大数据助理工程师 阿里云大学 大数据助理工程师课程笔记分享, 本资料仅供个人学习,不允许用作商业用途,侵权必删 == Alibaba Cloud Certification Associ ...
- Linux下使用shell脚本自动备份和移动数据到大容量存储
自动备份数据库,并将备份前一天的数据移动拷贝到存储上. 需求来源是因为linux系统层的磁盘存储容量过小,数据库自动备份之后日积月累数据越来越多,而且还不想删除旧数据.那解决方法就是在linux系统主 ...
- error 106: Can't Access ASP.NET\ClientFiles\
Error 1606 Can’t access ASP.NET\ClientFiles\ when installing Crystal Reports Support Pack 10 Sea ...
- 详解微信公众平台UnionID和OpenID的区别
OpenID: 普通用户的标识,对当前开发者帐号唯一.一个openid对应一个公众号. UnionID :用户统一标识.针对一个微信开放平台帐号下的应用,同一用户的unionid是唯一的. 微信的 ...
- 22,Django常用命令
学习Django你需要了解常见命令的使用,比如创建项目,创建应用,创建超级用户,数据表创建及更新,启动服务器等.这些命令都包含在django-admin.py和manage.py里.除此以外manag ...
- (备忘)解决用Xftp向CentOS7 传文件速度慢的问题
问题原因:之前用XFTP上传文件的时候一直挺好的,今天突然速度特别慢,上传了一个多小时也没把一个一百兆的文件成功上传 查询过程: 1.网络原因:网络的确有点卡,但不至于这么慢吧,几K的速度,鉴于网络问 ...
- 系统调用IO和标准IO
目录 1. 系统调用IO(无缓冲IO) 系统调用 常用系统调用IO函数 open close read write lseek ioctl 2. 标准IO(带缓冲IO) 概述 缓冲与冲洗 常用标准IO ...