【洛谷】P3177 [HAOI2015]树上染色
分析
直接求点与点之间的距离感觉不是很好求,所以我们考虑换一个求法。
瞄了一眼题解
距离跟路径上边的长度有关,所以我们直接来看每一条边的贡献吧(这谁想得到啊)
对于每一条边,它的贡献等于 (一边的白点数*另一边的白点数+一边的黑点数*另一边的黑点数)*边权
然后。。。。。我又卡住了。再次瞄题解
对于任意一棵子树,只要知道子树的大小和黑点个数,就可以算出将子树与外界相连的那条边的贡献
所以直接dp[i][j]表示i为根节点的子树中与j个黑色节点的对答案的最大贡献,然后直接树上背包就好了。
注意枚举状态的时候不要枚举到无意义的状态(这个点调了我半天)
代码(压行是信仰)
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=;
long long dp[maxn][maxn];
int n,K,ecnt,info[maxn],siz[maxn],inp[maxn],nx[maxn*],v[maxn*],w[maxn*];
void add(int u1,int v1,int w1){nx[++ecnt]=info[u1];info[u1]=ecnt;v[ecnt]=v1;w[ecnt]=w1;}
void dfs(int x,int f)
{
siz[x]=;
for(int i=info[x];i;i=nx[i])if(v[i]!=f)
{
inp[v[i]]=w[i];dfs(v[i],x);siz[x]+=siz[v[i]];
for(int j=min(siz[x],K);j>=;j--)
for(int k=;k<=j&&k<=siz[v[i]];k++)
if(j-k<=siz[x]-siz[v[i]])dp[x][j]=max(dp[x][j],dp[x][j-k]+dp[v[i]][k]);
}
for(int i=;i<=siz[x]&&i<=K;i++)
dp[x][i]+=1ll*(1ll*i*(K-i)+1ll*(siz[x]-i)*(n-K-siz[x]+i))*inp[x];
}
int main()
{
scanf("%d%d",&n,&K);
for(int i=,u1,v1,w1;i<n;i++)
scanf("%d%d%d",&u1,&v1,&w1),add(u1,v1,w1),add(v1,u1,w1);
dfs(,);printf("%lld\n",dp[][K]);
}
【洛谷】P3177 [HAOI2015]树上染色的更多相关文章
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 洛谷 P3177 [HAOI2015]树上染色
题目链接 题目描述 有一棵点数为 \(N\) 的树,树边有边权.给你一个在 \(0~ N\) 之内的正整数 \(K\) ,你要在这棵树中选择 \(K\)个点,将其染成黑色,并将其他 的\(N-K\)个 ...
- 洛谷P3177 [HAOI2015]树上染色(树形dp)
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- 洛谷P3177 [HAOI2015]树上染色(树上背包)
题意 题目链接 Sol 比较套路吧,设\(f[i][j]\)表示以\(i\)为根的子树中选了\(j\)个黑点对答案的贡献 然后考虑每条边的贡献,边的两边的答案都是可以算出来的 转移的时候背包一下. # ...
- BZOJ4033或洛谷3177 [HAOI2015]树上染色
BZOJ原题链接 洛谷原题链接 很明显的树形\(DP\). 因为记录每个点的贡献很难,所以我们可以统计每条边的贡献. 对于每一条边,设边一侧的黑点有\(B_x\)个,白点有\(W_x\),另一侧黑点有 ...
- 洛谷 3177 [HAOI2015] 树上染色
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)
P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...
- Luogu P3177 [HAOI2015]树上染色
一道有机结合了计数和贪心这一DP两大考点的神仙题,不得不说做法是很玄妙. 首先我们很容易想到DP,设\(f_{i,j}\)表示在以\(i\)为根节点的子树中选\(j\)个黑色节点的最大收益值. 然后我 ...
- P3177 [HAOI2015]树上染色
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
随机推荐
- Bad state: Stream has already been listened to.
https://stackoverflow.com/questions/51396769/flutter-bad-state-stream-has-already-been-listened-to T ...
- kubernetes第二章--集群搭建
- 【转载】C#使用Random类来生成指定范围内的随机数
C#的程序应用的开发中,可以使用Random随机数类的对象来生成相应的随机数,通过Random随机数对象生成随机数的时候,支持设置随机数的最小值和最大值,例如可以指定生成1到1000范围内的随机数.R ...
- 浅谈对BFC的认识,以及用bfc解决浮动问题
我们在前端的学习过程中常常会遇到BFC,用BFC来解决一些margin塌陷.margin合并清理浮动流的问题 那么问题来了,我们所说的BFC到底是个什么东西呢: 什么是BFC BFC(Block Fo ...
- vue 解决ios编辑器输入框不能拉起
一.问题描述:Android .pc.下可以正常使用,在ios下可以拉起输入框但是无法输入 <div contenteditable="true" ></div& ...
- mkimage命令
# mkimage Usage: mkimage -l image -l ==> list image header information mkimage [-x] -A arch -O os ...
- wireshark分析https数据包解密前后的特点
wireshark分析https数据包解密前后的特点 (一)https解密前 1.协议种类:2种(1)TCP(第四层,传输层)(2)SSL/TLS(第五层,应用层,加解密)2.应用层数据所在数据包特点 ...
- elk使用不足及弥补报警措施
全部都是6.6.2版本,就这还是没有敢选太新的 场景:每个收集点部署filebeat收集响应日志,然后发送到logstash,logstash发送到elasticsearch,和file,这里插一句, ...
- grpc的简单用例 (C++实现)
这个用例的逻辑很简单, 服务器运行一个管理个人信息的服务, 提供如下的四个服务: (1) 添加一个个人信息 注: 对应于Unary RPCs, 客户端发送单一消息给服务器, 服务器返回单一消息 (2) ...
- 学习python的日常
今天是开始正式接触python语言的第一天,然后来自前辈的知道开始了在学习过程当中用博客来记录自己的学习历程,以供自己更快地掌握这门编程语言. 大概的总结一下的话,还是按照我的编程的习惯,要学写代码, ...