pytorch1.0进行Optimizer 优化器对比
pytorch1.0进行Optimizer 优化器对比
import torch
import torch.utils.data as Data # Torch 中提供了一种帮助整理数据结构的工具, 叫做 DataLoader, 能用它来包装自己的数据, 进行批训练.
import torch.nn.functional as F # 包含激励函数
import matplotlib.pyplot as plt LR = 0.01 # 学习率
BATCH_SIZE = 32
EPOCH = 12 # 伪数据
# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size())) # plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show() # DataLoader 是 torch 用来包装开发者自己的数据的工具.
# 将自己的 (numpy array 或其他) 数据形式装换成 Tensor, 然后再放进这个包装器中.
# 使用 DataLoader 的好处就是他们帮你有效地迭代数据 # 先转换成 torch 能识别的 Dataset
# put dateset into torch dataset
torch_dataset = Data.TensorDataset(x, y)
# 把 dataset 放入 DataLoader
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,) # 随机打乱数据 (打乱比较好) # 每个优化器优化一个神经网络 # 默认的 network 形式
# default network
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(1, 20) # hidden layer
self.predict = torch.nn.Linear(20, 1) # output layer def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x # 创建不同的优化器, 用来训练不同的网络. 并创建一个 loss_func 用来计算误差.
if __name__ == '__main__':
# different nets
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] # different optimizers
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] loss_func = torch.nn.MSELoss()
losses_his = [[], [], [], []] # record loss # 训练/出图
# training
for epoch in range(EPOCH):
print('Epoch: ', epoch)
for step, (b_x, b_y) in enumerate(loader): # for each training step
# 对每个优化器, 优化属于他的神经网络
for net, opt, l_his in zip(nets, optimizers, losses_his):
output = net(b_x) # get output for every net
loss = loss_func(output, b_y) # compute loss for every net
opt.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
opt.step() # apply gradients
l_his.append(loss.data.numpy()) # loss recoder labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()

# SGD是最普通的优化器, 也可以说没有加速效果, 而Momentum是SGD的改良版,它加入了动量原则.后面的RMSprop又是Momentum的升级版.
# 而Adam又是RMSprop的升级版.Adam的效果似乎比RMSprop要差一点.所以说并不是越先进的优化器, 结果越佳.
# 在自己的试验中可以尝试不同的优化器, 找到那个最适合你数据网络的优化器.
pytorch1.0进行Optimizer 优化器对比的更多相关文章
- PLSQL_性能优化系列04_Oracle Optimizer优化器
2014-09-25 Created By BaoXinjian
- pytorch 7 optimizer 优化器 加速训练
import torch import torch.utils.data as Data import torch.nn.functional as F import matplotlib.pyplo ...
- 莫烦pytorch学习笔记(七)——Optimizer优化器
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...
- 各种优化器对比--BGD/SGD/MBGD/MSGD/NAG/Adagrad/Adam
指数加权平均 (exponentially weighted averges) 先说一下指数加权平均, 公式如下: \[v_{t}=\beta v_{t-1}+(1-\beta) \theta_{t} ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
- [PyTorch 学习笔记] 4.3 优化器
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/optimizer_methods.py https: ...
- Oracle SQL优化器简介
目录 一.Oracle的优化器 1.1 优化器简介 1.2 SQL执行过程 二.优化器优化方式 2.1 优化器的优化方式 2.2 基于规则的优化器 2.3 基于成本的优化器 三.优化器优化模式 3.1 ...
- 【MySQL】MySQL/MariaDB的优化器对in子查询的处理
参考:http://codingstandards.iteye.com/blog/1344833 上面参考文章中<高性能MySQL>第四章第四节在第三版中我对应章节是第六章第五节 最近分析 ...
- Pytorch1.0深度学习:损失函数、优化器、常见激活函数、批归一化详解
不用相当的独立功夫,不论在哪个严重的问题上都不能找出真理:谁怕用功夫,谁就无法找到真理. —— 列宁 本文主要介绍损失函数.优化器.反向传播.链式求导法则.激活函数.批归一化. 1 经典损失函数 1. ...
随机推荐
- ModuleNotFoundError: No module named 'tqdm'
bogon:faceswap-master macname$ pip3 install tqdm Collecting tqdm Downloading https://files.pythonhos ...
- [内网渗透]Mimikatz使用大全
0x00 简介 Mimikatz 是一款功能强大的轻量级调试神器,通过它你可以提升进程权限注入进程读取进程内存,当然他最大的亮点就是他可以直接从 lsass.exe 进程中获取当前登录系统用户名的密码 ...
- js 中数组对象的定义赋值 以及方法
1.定义数组 var m=new Array(); var n=[]; 2.数组的赋值(两种) A. var m=new Array(2); 一个值表示数组length var m=new Array ...
- Open vSwitch系列实验(三):Open vSwitch的VxLAN隧道网络实验
1 实验目的 该实验通过Open vSwitch构建Overlay的VxLAN网络,更直观的展现VxLAN的优势.在实验过程中,可以了解如何建立VxLAN隧道并进行配置,并实现相同网段和不同网段之间的 ...
- Unity3D 2D模拟经营游戏 洗车沙龙 完整源码
Car Wash Salon Game 描述洗车模板与几个迷你游戏相关的汽车清洁,洗涤和装饰. 简单但有趣的游戏和伟大的视觉效果. 此模板不包含在应用中! 自定义应用程序的示例,有些功能在本项目中不受 ...
- Unexpected token o in JSON at position 1 报错原因
写在前面的话这个问题在之前做项目时碰到过一次,当时按照网上的做法,去掉JSON.parse()这一层转换后就没有这个报错了,数据也能正常使用,就没多想,也没深究是什么原因. 可是这次又碰到了,所以这次 ...
- Swagger 慢
Swagger 慢 - 国内版 Binghttps://cn.bing.com/search?FORM=U227DF&PC=U227&q=Swagger+%E6%85%A2 rest框 ...
- PostgreSQL 登录时在命令行中输入密码
有时候需要设置定时任务直接执行 sql 语句,但是 postgresql 默认需要人工输入密码,以下命令可以直接在命令行中直接填入密码 PGPASSWORD=pass1234 psql -U MyUs ...
- ionic4.x EventEmitter3的使用
安装: npm install --save eventemitter3 创建event.service import { Injectable } from '@angular/core'; // ...
- ISO/IEC 9899:2011 条款6.6——常量表达式
6.6 常量表达式 语法 1.constant-expression conditional-expression 描述 2.一个常量表达式可以在翻译期间被计算,而不是在运行时,并且根据情况可以被用于 ...