dataframe 基本操作
package com.jason.example import org.apache.spark.sql.functions.broadcast class DFTest extends SparkInstance { import spark.implicits._ val df = Seq(
("jason", , "理想",),
(null, , "理想",),
("mac", , "理想",),
("mac", , "理想",)
).toDF("name", "depid", "company","groupid").repartition()
val df3 = Seq(
("jason", , "理想",),
("dong", , "理想",),
("mac", , "理想",)
).toDF("name", "depid", "company","groupid").repartition()
val df2 = Seq(
(,"周浦",),
(,"孙桥",),
(,"金桥",)
).toDF("depid","addr","gid").repartition()
def ff(): Unit = {
println(df.toString())//[name: string, depid: int ... 1 more field]
println(df.schema)
df.printSchema()
df.explain(true)//Prints the plans (logical and physical) to the console for debugging purposes.
println(df.dtypes.mkString(","))//(name,StringType),(depid,IntegerType),(company,StringType)
println(df.columns.mkString(","))//
//df.withWatermark() ???
df.show(,false)
df.na.drop("any"/*"all"*/).show(false) //删除df中包含null 或NaN 的记录,如果为any 则只要有有一列为
//null 或NaN 则删除整行,如果是all 则所有列是null ho NaN 时才删除整行
df.na.fill("xxx",Seq("name")).show()//缺失值填充,把null 或 NaN 替换为所需要的值
df.na.replace("name",Map("jason"->"abc","dong"->"def")).show()//将字段name 中 的值按照map 内容进行更改
//df.stat.xxx ???
df.join(df2,(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"right").show()
df.join(df2,(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show() df.join(df2,(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show()
println("="*)
df.join(df2.hint("broadcast"),(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show()
df.join(broadcast(df2),(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show()//spark 默认广播10MB的小表
//df2.hint("broadcast") 和 broadcast(df2) 是等同的
df.crossJoin(df2).show()//笛卡尔积
df.sort($"name".desc,$"depid".asc).show()
df.select("name","depid").show()
df.selectExpr("name as nm","depid as id").show()
df.filter(s"""name='jason'""").show()
df.where(s"""name='jason'""").select("name","depid").show
df.rollup("name","depid").count().show()
df.cube("name","depid").count().show()
df.groupBy("name","depid").count().show()
df.agg("name"->"max","depid"->"avg").show()
df.groupBy("name","depid").agg("name"->"max","depid"->"avg").show()
df.limit().show()
df.union(df3).show()
df.unionByName(df3).show()
df.intersect(df3).show()//交集
df.except(df3).show() //差集
df.sample(0.5).show()
df.randomSplit(Array(0.4,0.6)).apply().show()
df.withColumn("depid",$"depid".<=()).show() // 该方法可以替换或增加一列到原df, 第二个参数中的col必须时df中的元素
df.withColumnRenamed("name","姓名").show()
df.drop("name","depid")//舍弃某几列
df.distinct()
df.dropDuplicates("name").show() //根据某几列去重,会保留最后一条数据
df.describe().show() //count,mean,min,max
df.summary().show()//count,min,25%,50%,max
df.head() //所有的数据会被collect到driver
df.toLocalIterator() spark.stop()
}
} object DFTest {
def main(args: Array[String]): Unit = {
val dt = new DFTest
dt.ff()
}
}
dataframe 基本操作的更多相关文章
- DataFrame基本操作
这些操作在网上都可以百度得到,为了便于记忆自己再根据理解总结在一起.---------励志做一个优雅的网上搬运工 1.建立dataframe (1)Dict to Dataframe df = pd. ...
- python做数据分析pandas库介绍之DataFrame基本操作
怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...
- 用python做数据分析pandas库介绍之DataFrame基本操作
怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...
- pandas库介绍之DataFrame基本操作
怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构的基本操作 ...
- 用python做数据分析4|pandas库介绍之DataFrame基本操作
原文地址 怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构 ...
- 机器学习三剑客之Pandas中DataFrame基本操作
Pandas 是基于Numpy 的一种工具,是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷 ...
- pd库dataframe基本操作
一.查看数据(查看对象的方法对于Series来说同样适用) 1.查看DataFrame前xx行或后xx行 a=DataFrame(data); a.head(6)表示显示前6行数据,若head()中不 ...
- pyspark SparkSession及dataframe基本操作
from pyspark import SparkContext, SparkConf import os from pyspark.sql.session import SparkSession f ...
- python数据类型之pandas—DataFrame
DataFrame定义: DataFrame是pandas的两个主要数据结构之一,另一个是Series —一个表格型的数据结构 —含有一组有序的列 —大致可看成共享同一个index的Series集合 ...
随机推荐
- virtualbox的安装与使用、安装镜像创建虚拟机
1.官网:https://www.virtualbox.org/ 然后呢,点击下载: 开始安装virtualbox: 双击安装.详细安装过程见:https://baijiahao.baidu.com/ ...
- 练手WPF(四)——贪吃蛇小游戏的简易实现(下)
八.生成新的单节蛇身我们这里先说说游戏小原理好了,游戏运行后,通过计时器事件不断生成新的单节蛇身类SnakeNode,添加到List中的0位置,原来的蛇头变成了第二节.该节新蛇头的坐标通过蛇头前进方向 ...
- C# 实现敏感词过滤
实现 该 敏感词过滤 采用的是 DFA算法,参考文章:https://blog.csdn.net/chenssy/article/details/26961957 具体 实现 步骤 如下: 第一步,构 ...
- python数据挖掘介绍
目录 一:什么是数据挖掘 二:数据挖掘的基本任务 三:数据挖掘流程 四:数据挖掘建模工具 在python对数据的处理方式中,数据挖掘和数据分析是两个重要的方式,目的是为了从数据中获取具有科研或者商 ...
- electron——ipcMain模块、ipcRenderer模块
ipcMain 从 主进程 到 渲染进程 的异步通信. ipcMain模块是EventEmitter类的一个实例. 当在主进程中使用时,它处理从渲染器进程(网页)发送出来的异步和同步信息. 从渲染器进 ...
- Windows+Qt使用gRPC
上篇文章<Windows+VS2017使用gRPC>编译出了Windows下可用的gRPC静态lib库文件,在此基础上要想在Qt上使用,需要使用MSVC2017 64bit构建组件进行构建 ...
- AutoLayout的使用
虽然苹果提供了AutoresizingMask的布局方式,这个方式局限性太大:只能解决父控件和子控件间的相对关系: 因此,推出了AutoLayout:苹果官方也是推荐开发者尽量使用autolayout ...
- [b0016] python 归纳 (二)_静态方法和类方法
# -*- coding: UTF-8 -*- """ 测试 类的静态方法,类方法 @staticmethod @classmethod 总结: 1. self 指向类对 ...
- ERP WIP 部分API应用 详解
工单创建 (create work order) PROCEDURE new_work_order(p_wip_entity_id NUMBER, p_organization_id NUMBER, ...
- 单点登录,系统B如何辨别用户已登录系统A
首先系统A去访问受限资源,跳转到sso认证中心https://login.sso.com/login?redirectURL=https://www.a.com/center,用户登录成功之后,sso ...