dataframe 基本操作
package com.jason.example
import org.apache.spark.sql.functions.broadcast
class DFTest extends SparkInstance {
import spark.implicits._
val df = Seq(
("jason", , "理想",),
(null, , "理想",),
("mac", , "理想",),
("mac", , "理想",)
).toDF("name", "depid", "company","groupid").repartition()
val df3 = Seq(
("jason", , "理想",),
("dong", , "理想",),
("mac", , "理想",)
).toDF("name", "depid", "company","groupid").repartition()
val df2 = Seq(
(,"周浦",),
(,"孙桥",),
(,"金桥",)
).toDF("depid","addr","gid").repartition()
def ff(): Unit = {
println(df.toString())//[name: string, depid: int ... 1 more field]
println(df.schema)
df.printSchema()
df.explain(true)//Prints the plans (logical and physical) to the console for debugging purposes.
println(df.dtypes.mkString(","))//(name,StringType),(depid,IntegerType),(company,StringType)
println(df.columns.mkString(","))//
//df.withWatermark() ???
df.show(,false)
df.na.drop("any"/*"all"*/).show(false) //删除df中包含null 或NaN 的记录,如果为any 则只要有有一列为
//null 或NaN 则删除整行,如果是all 则所有列是null ho NaN 时才删除整行
df.na.fill("xxx",Seq("name")).show()//缺失值填充,把null 或 NaN 替换为所需要的值
df.na.replace("name",Map("jason"->"abc","dong"->"def")).show()//将字段name 中 的值按照map 内容进行更改
//df.stat.xxx ???
df.join(df2,(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"right").show()
df.join(df2,(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show()
df.join(df2,(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show()
println("="*)
df.join(df2.hint("broadcast"),(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show()
df.join(broadcast(df2),(df("depid")===df2("depid")).and(df("groupid")===df2("gid")),"left").show()//spark 默认广播10MB的小表
//df2.hint("broadcast") 和 broadcast(df2) 是等同的
df.crossJoin(df2).show()//笛卡尔积
df.sort($"name".desc,$"depid".asc).show()
df.select("name","depid").show()
df.selectExpr("name as nm","depid as id").show()
df.filter(s"""name='jason'""").show()
df.where(s"""name='jason'""").select("name","depid").show
df.rollup("name","depid").count().show()
df.cube("name","depid").count().show()
df.groupBy("name","depid").count().show()
df.agg("name"->"max","depid"->"avg").show()
df.groupBy("name","depid").agg("name"->"max","depid"->"avg").show()
df.limit().show()
df.union(df3).show()
df.unionByName(df3).show()
df.intersect(df3).show()//交集
df.except(df3).show() //差集
df.sample(0.5).show()
df.randomSplit(Array(0.4,0.6)).apply().show()
df.withColumn("depid",$"depid".<=()).show() // 该方法可以替换或增加一列到原df, 第二个参数中的col必须时df中的元素
df.withColumnRenamed("name","姓名").show()
df.drop("name","depid")//舍弃某几列
df.distinct()
df.dropDuplicates("name").show() //根据某几列去重,会保留最后一条数据
df.describe().show() //count,mean,min,max
df.summary().show()//count,min,25%,50%,max
df.head() //所有的数据会被collect到driver
df.toLocalIterator()
spark.stop()
}
}
object DFTest {
def main(args: Array[String]): Unit = {
val dt = new DFTest
dt.ff()
}
}
dataframe 基本操作的更多相关文章
- DataFrame基本操作
这些操作在网上都可以百度得到,为了便于记忆自己再根据理解总结在一起.---------励志做一个优雅的网上搬运工 1.建立dataframe (1)Dict to Dataframe df = pd. ...
- python做数据分析pandas库介绍之DataFrame基本操作
怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...
- 用python做数据分析pandas库介绍之DataFrame基本操作
怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...
- pandas库介绍之DataFrame基本操作
怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构的基本操作 ...
- 用python做数据分析4|pandas库介绍之DataFrame基本操作
原文地址 怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构 ...
- 机器学习三剑客之Pandas中DataFrame基本操作
Pandas 是基于Numpy 的一种工具,是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷 ...
- pd库dataframe基本操作
一.查看数据(查看对象的方法对于Series来说同样适用) 1.查看DataFrame前xx行或后xx行 a=DataFrame(data); a.head(6)表示显示前6行数据,若head()中不 ...
- pyspark SparkSession及dataframe基本操作
from pyspark import SparkContext, SparkConf import os from pyspark.sql.session import SparkSession f ...
- python数据类型之pandas—DataFrame
DataFrame定义: DataFrame是pandas的两个主要数据结构之一,另一个是Series —一个表格型的数据结构 —含有一组有序的列 —大致可看成共享同一个index的Series集合 ...
随机推荐
- 基于kafka_2.11-2.1.0实现的生产者和消费者代码样例
1.搭建部署好zookeeper集群和kafka集群,这里省略. 启动zk: bin/zkServer.sh start conf/zoo.cfg. 验证zk是否启动成功: bin/zkServer. ...
- Swagger实例分享(VS+WebApi+Swashbuckle)
Swagger实例分享(VS+WebApi+Swashbuckle) Swagger可以很方便的为发布的WebApi自动生成优雅的文档,不需额外自己编写,只需为项目配置好,是一个很好用的工具,做一个简 ...
- C# winform打开新窗体显示一段时间 关闭新窗体
1.form1的button事件下: form2 form = new form2(); form.Show(); Thread.Sleep(10000); //form2窗体显示10秒 form. ...
- CSS3动画实践——简易牛顿摆
最近在练习CSS3的关键帧动画(keyframes),于是做了一个简单的牛顿摆(听名字可能陌生,但你一定见过它): 先上代码(老版本IE可能存在兼容性问题): <!DOCTYPE html> ...
- Redis入门学习(二):下载安装
Linux操作系统 Download, extract and compile Redis with: $ wget http://download.redis.io/releases/redis-4 ...
- 深入理解--VUE组件中数据的存放以及为什么组件中的data必需是函数
1.组件中数据的存放 ***(重点)组件是一个单独模块的封装:这个模块有自己的HTML模板,也有data属性. 只是这个data属性必需是一个函数,而这个函数返回一个对象,这个对象里面存放着组件的数据 ...
- 7 CentOS 7网卡配置
首先重中之重:修改前一定要进行系统备份,如果是虚拟机进行快照 查看虚拟机的网卡配置 注意桥接模式和NAT模式 桥接模式:网络层面,虚拟机和PC处于同级地位,虚拟机直接和路由器相连 NA ...
- secruity
security3.x <?xml version="1.0" encoding="UTF-8"?> <beans:beans xmlns=& ...
- Django 练习班级管理系统五 -- 查看老师列表
models.py 对应的配置 class Classes(models.Model): caption = models.CharField(max_length=32) class Teacher ...
- 使用Nginx+Openresty实现WAF功能
什么是WAF Web应用防护系统(也称为:网站应用级入侵防御系统.英文:Web Application Firewall,简称: WAF).利用国际上公认的一种说法:Web应用防火墙是通过执行一系列针 ...